Development and Application of Extraction Metallurgical Volatile Organic Waste Gas Treatment Technology
-
摘要:
本文介绍了萃取冶金挥发性有机气体的组成以及处理萃取冶金挥发性废气的技术现状,分析了萃取冶金生产的特点,主要吸附材料活性炭的性质,光解与光催化和低温等离子技术。萃取冶金生产中产生的挥发性有机废气可以采用前端水洗预处理,活性炭吸附技术为主体和后端深度净化技术相集成的组合工艺进行处理。经过实际应用,采用组合式处理技术可以满足当前国家和地方的检测标准。
Abstract:This paper introduces the composition of the extraction metallurgical volatile organic gas and the technology status of the extraction metallurgical volatile waste gas. The characteristics of extraction metallurgy production, the properties of the main adsorbent activated carbon, photolysis and photocatalysis and low-temperature plasma technology are analyzed. The volatile organic waste gas generated in extraction metallurgical production can be treated by a combination process of front-end water washing pretreatment, and activated carbon adsorption technology as the main technology and back-end deep purification technology. After practical application, the combined processing technology can meet the current national and local testing standards.
-
Key words:
- Organic matter /
- Volatile organic waste gas /
- Activated carbon /
- Extraction /
- Adsorption
-
-
表 1 广东地方采用的II时段工艺废气大气污染物排放限值
Table 1. Emission limits of air pollutants from the second period of process used in Guangdong
污染物 排气筒/m 排放速率限制/(kg·h–1) 排放限制/
(mg·m–3)二类区域 三类区域 非甲烷总烃 15 8.4 13 120(使用溶剂汽油或其他混合烃类物质) 20 14 21 30 44 70 40 84 120 表 2 各类吸附用活性炭主要技术指标
Table 2. Main technical indicators of various types of activated carbon for adsorption
名称 椰壳 果壳 竹炭 煤质 碘值/(mg·g−1) >900 >900 >600 ≥900~950 容重/(g·cm−3) 0.45~0.55 0.45~0.55 0.45~0.60 0.45~0.60 水分/% <5 <5 ≤10 ≤5 CTC/% ≥80 ≥75 ≥10 ≥70 强度/% >88 >88 ≥75 ≥90 表 3 萃取冶金废气用活性炭的物性参数
Table 3. Physical parameters of activated carbon for extracting metallurgical waste gas
性质 粒状活性炭 粉状活性炭 真密度/( g·cm−3) 2.0~2.2 1.9~2.2 粒密度/( g·cm−3) 0.6~1.0 堆积密度/( g·cm−3) 0.35~0.6 0.15~0.6 孔隙率/% 33~45 45~75 细孔容积/( g·cm−3) 0.5~1.1 0.5~1.4 平均孔径/Å 1.2~4.0 1.5~4.0 比表面积/( g·cm−2) 700~1500 700~1600 表 4 常见萃取剂化学性质及物质关键氧化转化产物
Table 4. Chemical properties of common extractants and key oxidation conversion of substances
名称 代表 主要化学键 对应的化学键能/(kJ·mol−1) 光化学反应产物 铜萃取剂 LIX984、N902 C=C,C=N,C-O,H-O,C-C,N-O,C-H 611,749,358,463,346,176,415 CO2,H2O,NOX 醇类改质剂 仲辛醇 C-O,H-O,C-C,C-H 358,463,346,415 CO2,H2O 酸性磷酸酯 P204、P507 P-O,P=O,H-O,C-C,C-O,C-H 335,544,463,346,358,415 CO2,H2O 中性萃取剂 TBP P-O,P=O,C-C,C-O,C-H 335,544,346,358,415 CO2,H2O,P2O5 胺类萃取剂 N235、TOA C-C,C-N,C-H 346,305,415 CO2,H2O,NOX 表 5 萃取冶金企业废气经活性炭吸附后排放口(非甲烷总烃)检测结果
Table 5. Exhaust gas (non-methane total hydrocarbons) test results after being adsorbed by activated carbon
检测点 检测结果 评价标准 排气筒高度/m 标干流量/(m3·h−1) 排放浓度/(mg·m−3) 排放速度/(kg·h−1) 排放浓度/ (mg·m−3) 排放速度
/(kg·h−1)排放口1 9812 50.36 0.49 120 64 35 排放口2 8849 43.78 0.39 120 64 35 表 6 萃取冶金企业废气经活性炭和低温等离子体净化后排放口(非甲烷总烃)检测结果
Table 6. Exhaust gas (non-methane total hydrocarbons) test results after purification of exhaust gas from metallurgical enterprises by activated carbon and low-temperature plasma
检测点 检测结果 评价标准 排气筒高度/m 标干流量/(m3·h−1) 排放浓度/(mg·m−3) 排放速度/(kg·h−1) 排放浓度/(mg·m−3) 排放速度/(kg·h−1) 排放口1 10812 12.36 0.13 120 64 35 排放口2 11849 21.78 0.24 120 64 35 -
[1] 沈秋月, 羌宁. 有机溶剂回收技术的研究[J]. 四川环境, 2006, 25(6):101-105. doi: 10.3969/j.issn.1001-3644.2006.06.026
SHEN Q Y, QIANG N. Research on organic solvent recovery technology[J]. Sichuan Environment, 2006, 25(6):101-105. doi: 10.3969/j.issn.1001-3644.2006.06.026
[2] 唐运雪. 有机废气处理技术及前景展望[J]. 湖南有色金属, 2005, 21(5):31-35. doi: 10.3969/j.issn.1003-5540.2005.05.011
TANG Y X. Organic waste gas treatment technology and prospects[J]. Hunan Nonferrous Metals, 2005, 21(5):31-35. doi: 10.3969/j.issn.1003-5540.2005.05.011
[3] 张宇峰, 邵春燕, 张雪英, 等. 挥发性有机化合物的污染控制技术[J]. 南京工业大学学报, 2003, 23(3):89-92.
ZHANG Y F, SHAO C Y, ZHANG X Y, et al. Pollution control technology of volatile organic compounds[J]. Journal of Nanjing University of Technology, 2003, 23(3):89-92.
[4] 李守信, 宋剑飞, 李立清, 等. 挥发性有机污染化合物处理技术研究进展[J]. 化工环保, 2008(1):1-7. doi: 10.3969/j.issn.1006-1878.2008.01.001
LI S X, SONG J F, LI L Q, et al. Research progress in the treatment of volatile organic pollutants[J]. Environmental Protection of Chemical Industry, 2008(1):1-7. doi: 10.3969/j.issn.1006-1878.2008.01.001
[5] 李守信. 挥发性有机物污染控制工程[M]. 北京: 化学工业出版社, 2017.
LI S X. Volatile organic compound pollution control project[M]. Beijing: Chemical Industry Press, 2017.
[6] 袁烨, 曹刚, 翟星. 挥发性有机物治理工艺及催化剂研究进展[J]. 工业催化, 2019, 27(7):11-18. doi: 10.3969/j.issn.1008-1143.2019.07.003
YUAN Y, CAO GANG, ZHAI X. Research progress of volatile organic compounds treatment technology and catalysts[J]. Industrial Catalysis, 2019, 27(7):11-18. doi: 10.3969/j.issn.1008-1143.2019.07.003
[7] 林泽武. 低浓度VOCs废气处理技术及其应用探究[J]. 智能城市, 2019, 15:135-136.
LIN Z W. Research on low-concentration VOCs waste gas treatment technology and its application[J]. Smart City, 2019, 15:135-136.
[8] 李毅. UV光解与活性炭吸附联合治理有机废气[J]. 中国科技信息, 2020, 23:62-63.
LI Y. Combined treatment of organic waste gas by UV photolysis and activated carbon adsorption[J]. China Science and Technology Information, 2020, 23:62-63.
[9] 赖槐荣. UV光解净化设备去除三苯类废气的研究[J]. 资源节约与环保, 2016, 5:54-55. doi: 10.3969/j.issn.1673-2251.2016.10.041
LAI H R. Research on the removal of triphenyl waste gas by UV photolysis purification equipment[J]. Resource Conservation and Environmental Protection, 2016, 5:54-55. doi: 10.3969/j.issn.1673-2251.2016.10.041
[10] 邹克华, 严义刚, 刘 咏, 等. 低温等离子体治理恶臭气体研究进展[J]. 化工环保, 2008, 28(2):127-131. doi: 10.3969/j.issn.1006-1878.2008.02.009
ZOU K H, YAN Y G, LIU Y, et al. Research progress in low-temperature plasma treatment of malodorous gases[J]. Environmental Protection of Chemical Industry, 2008, 28(2):127-131. doi: 10.3969/j.issn.1006-1878.2008.02.009
[11] 郭玉芳, 叶代启, 陈克复. 挥发性有机化合物(VOCs)的低温等离子体-催化协同净化[J]. 工业催化, 2005, 13(11):1-5. doi: 10.3969/j.issn.1008-1143.2005.11.001
GUO Y F, YE D Q, CHEN K F. Low-temperature plasma-catalytic synergistic purification of volatile organic compounds (VOCs)[J]. Industrial Catalysis, 2005, 13(11):1-5. doi: 10.3969/j.issn.1008-1143.2005.11.001
[12] 李静, 韩世同, 白书培, 等. 低温等离子体协同催化处理VOC技术中填充材料的研究进展[J]. 化工科技, 2006, 14(5):33-39. doi: 10.3969/j.issn.1008-0511.2006.05.010
LI J, HAN S T, BAI S P, et al. Research progress of filling materials in low-temperature plasma synergistic catalytic treatment of VOC[J]. Chemical Science and Technology, 2006, 14(5):33-39. doi: 10.3969/j.issn.1008-0511.2006.05.010
[13] 高宗江, 李成, 郑君瑜, 等. 工业源VOCs 治理技术效果实测评估[J]. 环境科学研究, 2015, 28(6):994-1000.
GAO Z J, LI C, ZHENG J Y, et al. Field measurement and evaluation of industrial source VOCs treatment technology effect[J]. Environmental Science Research, 2015, 28(6):994-1000.
-