萃取冶金挥发性有机废气处理技术发展和应用实践

张伟, 李立清, 吴才贵, 廖彬, 龙光武, 宫晓丹. 萃取冶金挥发性有机废气处理技术发展和应用实践[J]. 矿产综合利用, 2022, 43(5): 9-14. doi: 10.3969/j.issn.1000-6532.2022.05.002
引用本文: 张伟, 李立清, 吴才贵, 廖彬, 龙光武, 宫晓丹. 萃取冶金挥发性有机废气处理技术发展和应用实践[J]. 矿产综合利用, 2022, 43(5): 9-14. doi: 10.3969/j.issn.1000-6532.2022.05.002
Zhang Wei, Li Liqing, Wu Caigui, Liao Bin, Long Guangwu, Gong Xiaodan. Development and Application of Extraction Metallurgical Volatile Organic Waste Gas Treatment Technology[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 9-14. doi: 10.3969/j.issn.1000-6532.2022.05.002
Citation: Zhang Wei, Li Liqing, Wu Caigui, Liao Bin, Long Guangwu, Gong Xiaodan. Development and Application of Extraction Metallurgical Volatile Organic Waste Gas Treatment Technology[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 9-14. doi: 10.3969/j.issn.1000-6532.2022.05.002

萃取冶金挥发性有机废气处理技术发展和应用实践

  • 基金项目: 国家科技支撑计划(2015BAB02B03);国家自然科学基金项目(21406097)
详细信息
    作者简介: 张伟(1984-),男,硕士,高级工程师,主要研究方向为锌湿法冶金及伴生金属综合回收技术
    通讯作者: 李立清(1979-),男,博士,教授,主要研究方向为湿法冶金及电化学。
  • 中图分类号: TD989; TF803

Development and Application of Extraction Metallurgical Volatile Organic Waste Gas Treatment Technology

More Information
  • 本文介绍了萃取冶金挥发性有机气体的组成以及处理萃取冶金挥发性废气的技术现状,分析了萃取冶金生产的特点,主要吸附材料活性炭的性质,光解与光催化和低温等离子技术。萃取冶金生产中产生的挥发性有机废气可以采用前端水洗预处理,活性炭吸附技术为主体和后端深度净化技术相集成的组合工艺进行处理。经过实际应用,采用组合式处理技术可以满足当前国家和地方的检测标准。

  • 加载中
  • 表 1  广东地方采用的II时段工艺废气大气污染物排放限值

    Table 1.  Emission limits of air pollutants from the second period of process used in Guangdong

    污染物排气筒/m排放速率限制/(kg·h–1排放限制/
    (mg·m–3
    二类区域三类区域
    非甲烷总烃158.413120(使用溶剂汽油或其他混合烃类物质)
    201421
    304470
    4084120
    下载: 导出CSV

    表 2  各类吸附用活性炭主要技术指标

    Table 2.  Main technical indicators of various types of activated carbon for adsorption

    名称椰壳果壳竹炭煤质
    碘值/(mg·g−1>900>900>600≥900~950
    容重/(g·cm−30.45~0.550.45~0.550.45~0.600.45~0.60
    水分/%<5<5≤10≤5
    CTC/%≥80≥75≥10≥70
    强度/%>88>88≥75≥90
    下载: 导出CSV

    表 3  萃取冶金废气用活性炭的物性参数

    Table 3.  Physical parameters of activated carbon for extracting metallurgical waste gas

    性质粒状活性炭粉状活性炭
    真密度/( g·cm−3)2.0~2.21.9~2.2
    粒密度/( g·cm−3)0.6~1.0
    堆积密度/( g·cm−3)0.35~0.60.15~0.6
    孔隙率/%33~4545~75
    细孔容积/( g·cm−3)0.5~1.10.5~1.4
    平均孔径/Å1.2~4.01.5~4.0
    比表面积/( g·cm−2)700~1500700~1600
    下载: 导出CSV

    表 4  常见萃取剂化学性质及物质关键氧化转化产物

    Table 4.  Chemical properties of common extractants and key oxidation conversion of substances

    名称代表主要化学键对应的化学键能/(kJ·mol−1)光化学反应产物
    铜萃取剂LIX984、N902C=C,C=N,C-O,H-O,C-C,N-O,C-H611,749,358,463,346,176,415CO2,H2O,NOX
    醇类改质剂仲辛醇C-O,H-O,C-C,C-H358,463,346,415CO2,H2O
    酸性磷酸酯P204、P507P-O,P=O,H-O,C-C,C-O,C-H335,544,463,346,358,415CO2,H2O
    中性萃取剂TBPP-O,P=O,C-C,C-O,C-H335,544,346,358,415CO2,H2O,P2O5
    胺类萃取剂N235、TOAC-C,C-N,C-H346,305,415CO2,H2O,NOX
    下载: 导出CSV

    表 5  萃取冶金企业废气经活性炭吸附后排放口(非甲烷总烃)检测结果

    Table 5.  Exhaust gas (non-methane total hydrocarbons) test results after being adsorbed by activated carbon

    检测点检测结果评价标准排气筒高度/m
    标干流量/(m3·h−1)排放浓度/(mg·m−3)排放速度/(kg·h−1)排放浓度/ (mg·m−3)排放速度
    /(kg·h−1)
    排放口1981250.360.491206435
    排放口2884943.780.391206435
    下载: 导出CSV

    表 6  萃取冶金企业废气经活性炭和低温等离子体净化后排放口(非甲烷总烃)检测结果

    Table 6.  Exhaust gas (non-methane total hydrocarbons) test results after purification of exhaust gas from metallurgical enterprises by activated carbon and low-temperature plasma

    检测点检测结果评价标准排气筒高度/m
    标干流量/(m3·h−1)排放浓度/(mg·m−3)排放速度/(kg·h−1)排放浓度/(mg·m−3)排放速度/(kg·h−1)
    排放口11081212.360.131206435
    排放口21184921.780.241206435
    下载: 导出CSV
  • [1]

    沈秋月, 羌宁. 有机溶剂回收技术的研究[J]. 四川环境, 2006, 25(6):101-105. doi: 10.3969/j.issn.1001-3644.2006.06.026

    SHEN Q Y, QIANG N. Research on organic solvent recovery technology[J]. Sichuan Environment, 2006, 25(6):101-105. doi: 10.3969/j.issn.1001-3644.2006.06.026

    [2]

    唐运雪. 有机废气处理技术及前景展望[J]. 湖南有色金属, 2005, 21(5):31-35. doi: 10.3969/j.issn.1003-5540.2005.05.011

    TANG Y X. Organic waste gas treatment technology and prospects[J]. Hunan Nonferrous Metals, 2005, 21(5):31-35. doi: 10.3969/j.issn.1003-5540.2005.05.011

    [3]

    张宇峰, 邵春燕, 张雪英, 等. 挥发性有机化合物的污染控制技术[J]. 南京工业大学学报, 2003, 23(3):89-92.

    ZHANG Y F, SHAO C Y, ZHANG X Y, et al. Pollution control technology of volatile organic compounds[J]. Journal of Nanjing University of Technology, 2003, 23(3):89-92.

    [4]

    李守信, 宋剑飞, 李立清, 等. 挥发性有机污染化合物处理技术研究进展[J]. 化工环保, 2008(1):1-7. doi: 10.3969/j.issn.1006-1878.2008.01.001

    LI S X, SONG J F, LI L Q, et al. Research progress in the treatment of volatile organic pollutants[J]. Environmental Protection of Chemical Industry, 2008(1):1-7. doi: 10.3969/j.issn.1006-1878.2008.01.001

    [5]

    李守信. 挥发性有机物污染控制工程[M]. 北京: 化学工业出版社, 2017.

    LI S X. Volatile organic compound pollution control project[M]. Beijing: Chemical Industry Press, 2017.

    [6]

    袁烨, 曹刚, 翟星. 挥发性有机物治理工艺及催化剂研究进展[J]. 工业催化, 2019, 27(7):11-18. doi: 10.3969/j.issn.1008-1143.2019.07.003

    YUAN Y, CAO GANG, ZHAI X. Research progress of volatile organic compounds treatment technology and catalysts[J]. Industrial Catalysis, 2019, 27(7):11-18. doi: 10.3969/j.issn.1008-1143.2019.07.003

    [7]

    林泽武. 低浓度VOCs废气处理技术及其应用探究[J]. 智能城市, 2019, 15:135-136.

    LIN Z W. Research on low-concentration VOCs waste gas treatment technology and its application[J]. Smart City, 2019, 15:135-136.

    [8]

    李毅. UV光解与活性炭吸附联合治理有机废气[J]. 中国科技信息, 2020, 23:62-63.

    LI Y. Combined treatment of organic waste gas by UV photolysis and activated carbon adsorption[J]. China Science and Technology Information, 2020, 23:62-63.

    [9]

    赖槐荣. UV光解净化设备去除三苯类废气的研究[J]. 资源节约与环保, 2016, 5:54-55. doi: 10.3969/j.issn.1673-2251.2016.10.041

    LAI H R. Research on the removal of triphenyl waste gas by UV photolysis purification equipment[J]. Resource Conservation and Environmental Protection, 2016, 5:54-55. doi: 10.3969/j.issn.1673-2251.2016.10.041

    [10]

    邹克华, 严义刚, 刘 咏, 等. 低温等离子体治理恶臭气体研究进展[J]. 化工环保, 2008, 28(2):127-131. doi: 10.3969/j.issn.1006-1878.2008.02.009

    ZOU K H, YAN Y G, LIU Y, et al. Research progress in low-temperature plasma treatment of malodorous gases[J]. Environmental Protection of Chemical Industry, 2008, 28(2):127-131. doi: 10.3969/j.issn.1006-1878.2008.02.009

    [11]

    郭玉芳, 叶代启, 陈克复. 挥发性有机化合物(VOCs)的低温等离子体-催化协同净化[J]. 工业催化, 2005, 13(11):1-5. doi: 10.3969/j.issn.1008-1143.2005.11.001

    GUO Y F, YE D Q, CHEN K F. Low-temperature plasma-catalytic synergistic purification of volatile organic compounds (VOCs)[J]. Industrial Catalysis, 2005, 13(11):1-5. doi: 10.3969/j.issn.1008-1143.2005.11.001

    [12]

    李静, 韩世同, 白书培, 等. 低温等离子体协同催化处理VOC技术中填充材料的研究进展[J]. 化工科技, 2006, 14(5):33-39. doi: 10.3969/j.issn.1008-0511.2006.05.010

    LI J, HAN S T, BAI S P, et al. Research progress of filling materials in low-temperature plasma synergistic catalytic treatment of VOC[J]. Chemical Science and Technology, 2006, 14(5):33-39. doi: 10.3969/j.issn.1008-0511.2006.05.010

    [13]

    高宗江, 李成, 郑君瑜, 等. 工业源VOCs 治理技术效果实测评估[J]. 环境科学研究, 2015, 28(6):994-1000.

    GAO Z J, LI C, ZHENG J Y, et al. Field measurement and evaluation of industrial source VOCs treatment technology effect[J]. Environmental Science Research, 2015, 28(6):994-1000.

  • 加载中

(6)

计量
  • 文章访问数:  917
  • PDF下载数:  184
  • 施引文献:  0
出版历程
收稿日期:  2021-01-28
刊出日期:  2022-10-25

目录