Study on Resource Utilization Technology of Typical Copper Tailings from Panxi Region
-
摘要:
为解决攀西地区某典型尾矿资源化利用问题,对该低品位尾矿进行了综合回收利用研究。基于尾矿工艺矿物学研究结果,研发了适合该尾矿性质的“浮磁重梯次回收有用矿物—尾矿制硅肥”的工艺技术路线,在回收利用有价元素基础上,使难利用的尾矿资源变成了产率11.78%、K2O品位7.77%、回收率25.92%的云母精矿和有效硅含量40%以上的硅肥产品,尾矿减少64.66%,实现了尾矿资源化及减量化。
Abstract:In order to solve the problems of typical tailings resource utilization from Panxi region, the technology of comprehensive utilization of the low-grade tailings was studied. Based on the research results of mineralogy of tailings process, the technical route of "floating-magnetic-gravity echelon recovery of useful mineral——silicon fertilizer from tailings" suitable for the tailing property is determined. On the basis of the recovery and utilization of valuable elements, the hard-to-use tailing resources are transformed into mica concentrate withyield of 11.78%、K2O grade 7.77%、recovery rate of 25.92% and silicon fertilizer products with effective silicon more than 40%. The tailings can be reduced by 64.66%, thus realizing the resource recovery and reduction of tailing.
-
-
表 1 尾矿主要元素化学分析结果/%
Table 1. Chemical analysis results of the main elements of tailings
Cu S K2O Na2O Al2O3 SiO2 CaO MgO TFe P2O5 TREO 烧失 0.040 0.20 3.06 3.05 13.42 50.12 5.93 2.05 8.10 0.73 0.154 6.32 表 2 铜浮选闭路实验结果
Table 2. Results of copper flotation closed-circuit test
产品名称 产率/% 品位/% 回收率/% Cu S Cu S 铜硫精矿 0.86 1.13 18.31 24.71 71.37 尾矿 99.14 0.030 0.0064 75.29 28.63 原矿 100.000 0.040 0.22 100.00 100.00 表 3 铁矿物回收实验结果
Table 3. Results of iron recovery test
磁场强度
/Oe产品
名称产率/% TFe品位/% 回收率/% 作业 对原矿 作业 对原矿 800 铁精矿 1.23 1.22 54.22 9.80 9.72 尾矿 98.77 98.78 6.21 90.20 给矿 100.00 100.00 6.80 100.00 1000 铁精矿 1.27 1.26 54.61 9.64 9.56 尾矿 98.73 98.74 6.60 90.36 给矿 100.00 100.00 7.21 100.00 1200 铁精矿 1.31 1.30 53.15 9.91 9.82 尾矿 98.69 98.70 6.42 90.09 给矿 100.00 100.00 7.04 100.00 1400 铁精矿 1.29 1.28 53.53 9.67 9.59 尾矿 98.71 98.72 6.56 90.33 给矿 100.00 100.00 7.17 100.00 表 4 重选精选实验结果
Table 4. Test results of gravity and cleaning separation
产品名称 作业产率/% K2O品位/% K2O作业回收率/% 云母精矿 26.17 7.77 42.26 中矿 18.25 4.37 16.58 尾矿 55.58 3.56 41.46 给矿 100.00 4.38 100.00 表 5 助剂种类实验结果
Table 5. Test results of fertilizer kinds
助剂种类 样品∶助剂 烧失率/% 产品有效硅含量/
(以SiO2计,%)碳酸钠 30∶6 3.7 0.23 氢氧化钠 30∶3 2.2 0.15 生石灰 20∶10 3.2 37.26 碳酸钙 20∶10 5.2 35.17 碳酸钾 30∶6 3.1 1.40 表 6 助剂用量实验结果
Table 6. Test results of fertilizer dosage
助剂碳酸钙
用量/g样品∶助剂 烧失率/% 产品有效硅含量/
(以SiO2计,%)5.0 20∶5 3.4 1.27 7.5 20∶7.5 4.6 14.02 10 20∶10 5.7 35.72 15 20∶15 8.0 46.79 20 20∶20 10.2 42.31 表 7 焙烧温度实验结果
Table 7. Test results of calcination temperature
样品∶碳酸钙 焙烧温度/
℃焙烧时间/
h烧失率/
%产品有效硅含量/
(以SiO2计,%)20∶15 900 2 5.5 11.94 20∶15 1000 2 5.6 14.65 20∶15 1100 2 5.6 26.00 20∶15 1200 2 5.6 45.38 -
[1] 刘洋, 张春霞. 钢铁渣的综合利用现状及发展趋势[J]. 矿产综合利用, 2019(2):21-25. doi: 10.3969/j.issn.1000-6532.2019.02.004
LIU Y, ZHANG C X. Comprehensive utilization situation and development trend of iron and steel slag in China and abroad[J]. Multipurpose Utilization of Mineral Resources, 2019(2):21-25. doi: 10.3969/j.issn.1000-6532.2019.02.004
[2] 李福来, 胡克, 等. 我国矿山固体废弃物现状与对策分析[J]. 国土资源科技管理, 2005, 22(3):66-70. doi: 10.3969/j.issn.1009-4210.2005.03.016
LI F L, HU K, et al. Mining solid waste in China: present conditions and countermeasures[J]. Scientific and Technological Management of Land and Resources, 2005, 22(3):66-70. doi: 10.3969/j.issn.1009-4210.2005.03.016
[3] 颜学军. 矿山尾矿资源的综合利用和环境保护[J]. 稀有金属与硬质合金, 2005, 33(3):23-25. doi: 10.3969/j.issn.1004-0536.2005.03.007
YAN X J. Comprehensive utilization and environmentalprotection of Mine tailing resource[J]. Rare Metals and Cemented Carbides, 2005, 33(3):23-25. doi: 10.3969/j.issn.1004-0536.2005.03.007
[4] 中国工业固废网. 2019—2020年度中国大宗工业固体废弃物综合利用产业发展报告[M]. 北京, 2021.
China Industrial Solid Waste Network. Industrial development report of comprehensive utilization of bulk industrial solid waste in China 2019—2020[M]. Beijing, 2021.
[5] 秦玉芳, 马莹, 李娜. 白云鄂博尾矿库及其资源利用研究概况[J]. 矿产综合利用, 2020(6):100-109. doi: 10.3969/j.issn.1000-6532.2020.06.018
QIN Y F, MA Y, LI N. Research overview of Bayan Obo tailings pond and its resource utilization[J]. Multipurpose Utilization of Mineral Resources, 2020(6):100-109. doi: 10.3969/j.issn.1000-6532.2020.06.018
[6] 杨进忠, 毛益林, 等. 某尾矿资源化处置与综合利用[J]. 矿产综合利用, 2019(6):117-122. doi: 10.3969/j.issn.1000-6532.2019.06.025
YANG J Z, MAO Y L, et al. Study on resource disposal and comprehensive utilization of tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(6):117-122. doi: 10.3969/j.issn.1000-6532.2019.06.025
[7] 席晓光, 张金良, 顾晨, 等. 钼尾矿中回收铁和云母选矿实验研究[J]. 矿业工程, 2015(5):22-24. doi: 10.3969/j.issn.1671-8550.2015.05.008
XI X G, ZHANG J L, et al. Mineral processing experimental study on recovery of Fe and mica from molybdenum tailings[J]. Mining Engineering, 2015(5):22-24. doi: 10.3969/j.issn.1671-8550.2015.05.008
[8] 刘洋, 张春霞. 水淬高炉渣制备硅肥的研究[J]. 矿产综合利用, 2019(5):116-120. doi: 10.3969/j.issn.1000-6532.2019.05.025
LIU Y, ZHANG C X. Study on preparation of silicon fertilizer from water-quenched blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(5):116-120. doi: 10.3969/j.issn.1000-6532.2019.05.025
[9] 王敬伟, 纪发达. 硅肥制备工艺及发展现状[J]. 中国高新科技, 2021, 18(9):109-110. doi: 10.13535/j.cnki.10-1507/n.2021.18.49
WANG J W, JI F D. Preparation technology and present situation of silicon fertilizer[J]. China High-Tech, 2021, 18(9):109-110. doi: 10.13535/j.cnki.10-1507/n.2021.18.49
-