Super-Grade Iron Concentrate Experimental Study on an Iron Concentrate from Sichuan
-
摘要:
对四川某铁矿铁精矿进行超级铁精矿选别实验研究,原料中TFe品位65.50%,主要的脉石成分为SiO2,品位为4.82%,有害元素S、P含量较低,磁性铁占有率98.74%,其他物相的铁元素含量很低,且基本不具有磁性,通过继续磨矿-磁选,可提升磁性铁占有率,进而提升铁精矿纯度。实验采用“预先筛分-磨矿分级-磁选-反浮选”的选别工艺制备超级铁精矿,在筛分尺寸0.074 mm,以纳米陶瓷球为磨矿介质,磨矿粒度−0.038 mm 90%,反浮选阳离子捕收剂分段添加量(100+50+50) g/t,玉米淀粉600 g/t的条件下可获得产率24.23%,可获得铁品位71.71%,SiO2含量0.16%,酸不溶物0.16%的超级铁精矿。该工艺磨矿能耗低,药剂制度简单,药剂绿色高效,流程合理,可行性高,同时全流程实验生产的副产品铁精矿产率72.25%,品位65.47%,可作为优质铁精矿销售。
Abstract:In terms of the iron concentrate, the TFe grade is 65.50% and mainly gangue is quartz with the content of 4.82%. Additionally, the content of harmful impurity, sulphur and phosphor, is low. Following grinding-magnetic separationis able to enhance the mFe content and grade of concentrate for the reason that the content of mFe is 98.74% and other iron phase is nonmagnetic. The process of prescreening-grinding-classification-magnetic separation-reverse flotation is adopted to the super-grade iron concentrate experimental study of an iron concentrate from Sichuan. When the screen size is 0.074 mm and grinding fitness is -0.038 mm 90%, using the thenanoceramic balls as milling medium, super-grade iron concentrate with yield 24.23%, TFe grade 71.71%, quartz content of 0.16%, acid insoluble content of 0.16% could be obtained. In the process, the usage of corn starch is 600 g/t and the usage of collector is 100+50+50 g/t. The process is reasonable and significantly feasibility with low energy consumption and simple reagent system. Additionally, the process could obtain normal iron concentrate with the yield of 72.25% and TFe grade of 65.47% which could be considered as good iron concentrate product to sell.
-
Key words:
- Super-grade iron concentrate /
- Pre-screen /
- Magnetic separation /
- Reverse flotation
-
-
表 1 原矿多元素分析结果/%
Table 1. Multi-element analysis results of run-of-mine ore
TFe P S SiO2 Al2O3 65.50 0.10 0.03 4.82 0.45 表 2 铁物相分析结果/%
Table 2. Analysis results of iron phase
名称 磁性铁 赤、褐铁矿 硅酸铁 碳酸铁 硫化铁 合计 含量/% 64.43 0.35 0.36 0.05 0.06 65.25 占有率/% 98.74 0.54 0.55 0.08 0.09 100.00 表 3 原料粒度组成分析结果
Table 3. Analysis of grain size composition of feeder
粒级/mm 产率/% TFe品位/% 金属分布率/% +0.074 36.72 62.32 34.93 −0.074+0.043 24.86 64.68 24.55 −0.043+0.038 9.96 68.12 10.36 −0.038 28.46 69.41 30.16 原料 100.00 65.50 100.00 表 4 “磨矿-磁选”实验结果/%
Table 4. Test result of “grinding-magnetic separation”
磨矿细度 名称 产率/% 品位/% 回收率/% −0.043 mm 90% 精矿 96.43 68.84 98.58 尾矿1 2.62 20.65 0.80 尾矿2 0.95 44.24 0.62 给矿 100.00 67.34 100.00 −0.038 mm 90% 精矿 92.32 70.36 96.34 尾矿1 5.56 23.43 1.93 尾矿2 2.12 55.03 1.73 给矿 100.00 67.43 100.00 −0.0308 mm 80% 精矿 90.01 71.02 94.81 尾矿1 7.32 25.72 2.79 尾矿2 2.67 60.65 2.40 给矿 100.00 67.43 100.00 −0.0308 mm 95% 精矿 88.63 71.09 93.51 尾矿1 8.11 29.42 3.54 尾矿2 3.26 61.03 2.95 给矿 100.00 67.38 100.00 表 5 反浮选开路实验实验结果
Table 5. Result of reverse flotation open-circuit test
产品名称 产率/% 品位/% 回收率/% 铁精矿 41.48 71.71 42.31 中2 14.40 70.08 14.35 中1 16.34 69.95 16.25 尾矿 27.78 68.58 27.09 原矿 100.00 70.32 100.00 表 6 超级铁精矿多元素分析结果/%
Table 6. Chemical analysis results of super-grade iron concentrate
Fe SiO2 Al2O3 CaO MgO K2O Na2O 71.71 0.16 0.15 0.036 0.057 0.002 0.001 S P MnO ZnO TiO2 Cr2O3 酸不溶物 0.012 0.003 0.09 0.02 0.008 0.019 0.16 -
[1] 李凤久, 尚新月, 李国峰, 等. 河北某铁矿铁精矿制备超级铁精矿试验[J]. 矿产综合利用, 2019(6):33-36. doi: 10.3969/j.issn.1000-6532.2019.06.007
LI F J, SHANG X Y, LI G F, et al. Experimental study on preparation of the super iron concentrate from an iron concentrate of an iron mine in Hebei Province[J]. Multipurpose Utilization of Mineral Resources, 2019(6):33-36. doi: 10.3969/j.issn.1000-6532.2019.06.007
[2] 李艳军, 袁志涛, 韩跃新. 高品位铁精矿的制备技术及其应用[J]. 金属矿山, 2006(8):270-273.
LI Y J, YUAN Z T, HAN Y X. Preparation technology and application of high-grade iron concentrate[J]. Metal Mine, 2006(8):270-273.
[3] 孙永升, 曹越, 韩跃新, 等. 基于原料矿物学基因特性的超级铁精矿制备评价体系[J]. 金属矿山, 2018(2):76-79. doi: 10.19614/j.cnki.jsks.201802014
SUN Y S, CAO Y, HAN Y X, et al. Super iron concentrate preparation evaluation system based on the genetic characteristics of raw material mineralogy[J]. Metal Mine, 2018(2):76-79. doi: 10.19614/j.cnki.jsks.201802014
[4] 胡国辉, 张廷龙, 宋现洲, 等. 新型陶瓷球在大型立式搅拌磨上的应用初探[J]. 矿山机械, 2018(10):30-32. doi: 10.3969/j.issn.1001-3954.2018.10.008
HU G H, ZHANG T L, SONG X Z, et al. Preliminary study on the application of new ceramic balls in large-scale vertical stirring mill[J]. Mining Machinery, 2018(10):30-32. doi: 10.3969/j.issn.1001-3954.2018.10.008
[5] 张泾生, 邓克, 李维兵. 磁选-阴离子反浮选工艺应用现状及展望[J]. 金属矿山, 2004(5):24-28. doi: 10.3321/j.issn:1001-1250.2004.05.009
ZHANG J S, DENG K, LI W B. Application status and prospect of magnetic separation-anion reverse flotation process[J]. Metal Mine, 2004(5):24-28. doi: 10.3321/j.issn:1001-1250.2004.05.009
[6] 邱廷省, 张卫星, 方夕辉, 等. 铁矿石阳离子反浮选技术研究进展及应用现状[J]. 金属矿山, 2012(2):89-93. doi: 10.3969/j.issn.1001-1250.2012.02.026
QIU T S, ZHANG W X, FANG X H, et al. Research progress and application status of iron ore cationic reverse flotation technology[J]. Metal Mine, 2012(2):89-93. doi: 10.3969/j.issn.1001-1250.2012.02.026
-