-
摘要:
黄铁矿是自然界中储量最丰富的硫化矿之一,常与铅、锌、铜等价值较高的硫化矿共生。针对被高碱抑制的黄铁矿,常使用活化剂改善其可浮性,从而活化选硫,而活化剂对黄铁矿表面性质的影响是研究其作用机理的关键。本文详细阐述了黄铁矿晶体性质,包括其微观晶体结构、能带结构、态密度、Mulliken布局、电化学性质等;以黄铁矿表面物种演变为切入点,介绍了表面杂质掺杂、空位缺陷和表面氧化对其可浮性的影响。综述了离子活化和活化药剂的作用机理:铜、铅离子活化会在黄铁矿表面形成吸附活性位点,促进捕收剂吸附;酸类活化剂会清除黄铁矿表面亲水沉淀和氧化产物;盐类活化剂则会与黄铁矿表面原子反应,改变黄铁矿表面性质和水化层结构,从而促进浮选。加强对活化剂作用过程中黄铁矿表面性质的观察、表征、精确计算和模拟,可为黄铁矿的高效清洁活化剂研发、资源合理利用和环境保护提供一定科学依据。
Abstract:Pyrite is one of the most abundant sulfide minerals in nature, often associated with lead, zinc, copper and other high-value sulfide minerals. Activators are normally used to improve the floatability of pyrite that inhibited due to high alkalinity. The influence of activators on the surface properties of pyrite is the key to reveal its mechanisms. This study investigates the crystal properties of pyrite, including its crystal structure, band structure, density of states, Mulliken, electrochemical properties, etc. Taking the evolution of pyrite surface species as the starting point, this study introduces the effects of surface doping, vacancy defects and surface oxidation on its floatability. The activation mechanisms of ions and flotation agents are reviewed: copper and lead ions form active sites for the adsorption of collector on pyrite surface and promote the adsorption of collectors; acid activators remove hydrophilic precipitation and oxidation products on the surface of pyrite; salt activators react with atoms on pyrite surface to change the surface properties and hydrated layer structure, thereby promoting pyrite flotation. The focus on the surface properties of pyrite including observation, characterization, accurate calculation and simulation during activation, can provide a credible scientific basis for the development of efficient and clean activators, rational utilization of resources and environmental protection.
-
Key words:
- Pyrite /
- Surface properties /
- Activation /
- Flotation /
- Density functional theory
-
-
图 2 黄铁矿的能带结构和态密度[6]
Figure 2.
表 1 铵盐和钠盐溶液水解的pH值比较[25]
Table 1. Comparison of pH values for hydrolysis of ammonium and sodium salt solutions
药剂名称 (NH4)2SO4 Na2SO4 NH4HCO3 NaHCO3 Na2CO3 pH值 6 7 8 9 12 -
[1] 罗宿星, 陈华仕, 牟青松, 等. 黄铁矿的吸附性能研究现状及进展[J]. 矿产综合利用, 2020(5):26-33. LUO S X, CHEN H S, MU Q S, et al. Research situation and progress of adsorption properties of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):26-33.
[2] 孙伟, 张英, 覃武林, 等. 不同黄铁矿石灰环境受抑活化研究[J]. 矿产综合利用, 2015: 33-38.
SUN W, ZHANG Y, QIN W L, et al. Research on inhibited activation of different types of pyrite in the lime enviroment[J]. Multipurpose Utilization of Mineral Resources, 2015: 33-38.
[3] Prince, K C, Matteucci M, Kuepper K, et al. Core-level spectroscopic study of FeO and FeS2[J]. Physical Review B, 2005, 71:085102. doi: 10.1103/PhysRevB.71.085102
[4] 林清泉, 詹信顺, 张红华, 等. 辉钼矿和黄铁矿的晶体结构与表面性质研究[J]. 矿冶工程, 2019, 39:40-45. LIN Q Q, ZHAN X X, ZHANG H H, et. al. Crystal structures and surface properties of molybdenite and pyrite[J]. Mining and Metallurgical Engineering, 2019, 39:40-45. doi: 10.3969/j.issn.0253-6099.2019.03.010
[5] Schlegel P, Wachter P. Optical properties, phonons and electronic structure of iron pyrite[J]. Journal of Physics C Solid State Physics, 1976, 9(17):3363. doi: 10.1088/0022-3719/9/17/027
[6] 李玉琼, 陈建华, 陈晔. 空位缺陷黄铁矿的电子结构及其浮选行为[J]. 物理化学学报, 2010, 26(5):1435-1441. LI Y Q, CHEN J H, CHEN Y. Electronic structures and flotation behavior of pyrite containing vacancy defects[J]. Acta Physico-Chimica Sinica, 2010, 26(5):1435-1441. doi: 10.3866/PKU.WHXB20100332
[7] 苏超, 申培伦, 李佳磊, 等. 黄铁矿浮选的抑制与解抑活化研究进展[J]. 化工进展, 2019, 38:1921-1929. SU C, SHEN P L, LI J L, et al. A review on depression and derepression of pyrite flotation[J]. Chemical Industry and Engineering Progress, 2019, 38:1921-1929. doi: 10.16085/j.issn.1000-6613.2018-1351
[8] Savage K S, Stefan D, Lehner S W. Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products[J]. Applied Geochemistry, 2008, 23(2):103-120. doi: 10.1016/j.apgeochem.2007.10.010
[9] 张芹. 铅锑锌铁硫化矿电化学浮选行为及表面吸附的研究 [D] 长沙: 中南大学, 2004.
ZHANG Q. The study of electrochemistry flotation behavior and surface adsorption of lead-antimony-zinc-iron sulfides [D]. Changsha: Central South University, 2004.
[10] Yin W, Xue J, Li D, et al. Flotation of heavily oxidized pyrite in the presence of fine digenite particles[J]. Minerals Engineering, 2018, 115:142-149. doi: 10.1016/j.mineng.2017.10.016
[11] Li Y, Chen J, Guo J. DFT study of influences of As, Co and Ni impurities on pyrite (100) surface oxidation by O2 molecule[J]. Chemical Physics Letters, 2011, 4(511):389-392.
[12] Hicyilmaz C, Emre Altun N, Ekmekci Z, et al. Quantifying hydrophobicity of pyrite after copper activation and DTPI addition under electrochemically controlled conditions[J]. Minerals Engineering, 2004, 17(7):879-890.
[13] Pecina E T, Uribe A, Nava F, et al. The role of copper and lead in the activation of pyrite in xanthate and non-xanthate systems[J]. Minerals Engineering, 2005, 19(2):172-179.
[14] Bushell C H G, Krauss C J. Copper activation of pyrite[J]. Canadian Mining and Metallurgical Bulletin, 1962(5):314-318.
[15] Weisener C, Gerson A. Cu(Ⅱ) adsorption mechanism on pyrite: an XAFS and XPS study[J]. Surface and Interface Analysis, 2000, 30:454-458. doi: 10.1002/1096-9918(200008)30:1<454::AID-SIA807>3.0.CO;2-1
[16] 赵清平, 蓝卓越, 童雄. 铜离子对闪锌矿、黄铁矿浮选的选择性活化机理研究 [J]. 矿产综合利用, 2021(3): 27-38.
ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of sphalerite and pyrite by copper [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 27-38.
[17] J O Leppinen. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals[J]. International Journal of Mineral Processing, 1990, 30(3-4):245-263. doi: 10.1016/0301-7516(90)90018-T
[18] Zhang Q, Xu Z, Bozkurt V, et al. Pyrite flotation in the presence of metal ions and sphalerite[J]. International Journal of Mineral Processing, 1997, 52(2):187-201.
[19] Peng Y, Grano S. Effect of grinding media on the activation of pyrite flotation[J]. Minerals Engineering, 2010, 23(8):600-605. doi: 10.1016/j.mineng.2010.02.003
[20] Finkelstein N P. The activation of sulphide minerals for flotation: a review[J]. International Journal of Mineral Processing, 1997, 52(2):81-120.
[21] Sui C C, Stephane H R B, Xu Z, et al. Xanthate adsorption on Pb contaminated pyrite[J]. International Journal of Mineral Processing, 1997, 49(3):207-221.
[22] 林榜立, 郭业东, 阙绍娟. 硫化矿活化剂FY01的制备及应用研究[J]. 有色金属(选矿部分), 2014(2):82-86. LIN B L, GUO Y D, QUE S J. Preparation and application of activator FY01 for sulphide ore[J]. Nonferrous Metals (Mineral Processing Section), 2014(2):82-86.
[23] 孙伟, 张英, 覃武林, 等. 被石灰抑制的黄铁矿的活化浮选机理[J]. 中南大学学报(自然科学版), 2010, 41:813-818. SUN W, ZHANG Y, QIN W L, et al. Activated flotation of pyrite once depressed by lime[J]. Journal of Central South University, 2010, 41:813-818.
[24] Huang H, Hu Y, Sun W. Activation flotation and mechanism of lime-depressed pyrite with oxalic acid[J]. International Journal of Mining Science and Technology, 2012, 22(1):63-67. doi: 10.1016/j.ijmst.2011.07.007
[25] 黄尔君, 冯育武. 铵盐对黄铁矿的活化作用及其机理研究[J]. 有色金属(选矿部分), 1996(2):33-37+41. HUANG E J, FENG Y W. Study on the activation effect mechanism of ammonium salt on pyrite[J]. Nonferrous Metals (Mineral Processing Section), 1996(2):33-37+41.
[26] 邓海波. 铅锌尾矿中被石灰强烈抑制的黄铁矿活化浮选回收研究[J]. 有色金属(选矿部分), 1998(1):3-5. DENG H B. Study on recovery of activated flotation of pyrite strongly inhibited by lime in lead-zinc tailings[J]. Nonferrous Metals (Mineral Processing Section), 1998(1):3-5.
[27] 昆明理工大学. 一种铜硫分离中黄铁矿的解抑活化方法[P] 中国: CN109261364 A, 2018-08-17.
Kunming University of Science and Technology. Method for depressing and activating pyrite in copper-sulfur separation [P], China: CN109261364 A, 2018-08-17.
[28] 昆明理工大学. 一种硫化铁矿的活化方法[P] 中国: CN109261371 A, 2019-01-25.
Kunming University of Science and Technology. Method for activating iron sulfide ore [P], China: CN109261371 A, 2019-01-25.
[29] Hassas B V, Miller J D. The effect of carbon dioxide and nitrogen on pyrite surface properties and flotation response[J]. Minerals Engineering, 2019, 144:106048. doi: 10.1016/j.mineng.2019.106048
[30] 江西理工大学. 一种受石灰抑制硫铁矿的临界氧化活化方法[P] 中国: CN112076884 A, 2020-09-01.
Jiangxi University of Science and Technology. Critical oxidation activation method of pyrite inhibited by lime[P], China: CN112076884 A, 2020-09-01.
[31] 李玉琼, 陈建华, 蓝丽红, 等. 氧分子在黄铁矿和方铅矿表面的吸附[J]. 中国有色金属学报, 2012, 22:1184-1194. LI Y Q, CHEN J H, LAN L H, et al. Adsorption of O2 on pyrite and galena surfaces[J]. , The Chinese Journal of Nonferrous Metals, 2012, 22:1184-1194. doi: 10.19476/j.ysxb.1004.0609.2012.04.029
[32] Li Y, Chen J, Chen Y, et al. DFT Simulation on Interaction of H2O Molecules with ZnS and Cu-Activated Surfaces[J]. The Journal of Physical Chemistry C, 2019, 123:3048-3057. doi: 10.1021/acs.jpcc.8b12273
-