Evaluation of Heavy Metal Pollution in Soils from a Mining Area in Southern Jiangxi
-
摘要:
这是一篇矿山环境工程领域的论文。对赣南某矿区40个土壤样品的重金属含量进行了测定,结果显示,Cu、Zn、Cr、Ni、Cd、As和Hg含量的平均值均低于江西省土壤重金属背景值,而Pb含量高于背景值。相关性分析结果表明,研究区内土壤重金属Cu和Cr、Ni、Cd,Zn和Cd,Ni和Cr、Cd,Hg和As呈现显著正相关,说明其可能具有较高的同源性或复合关系。分别利用单因子污染指数法、Nemerow综合污染指数法、污染负荷指数法和潜在生态风险分析法对研究区内土壤污染程度进行了评价和风险评估。单因子污染指数法评价结果表明,单一元素污染程度由高到低依次是Pb>Cd>Zn,但总体污染程度较低;Nemerow综合污染指数指出重金属重度污染的样本点主要集中在矿区和河流中下游地区;土壤样本重金属污染系数均值从高到低依次是Pb、Cd、Zn、Cr、Cu、Hg、Ni和As,整个研究区内土壤污染负荷指数适中,污染水平中等;重金属Cu、Zn、Cr、Ni和As的潜在生态风险评价属于轻微生态风险,而Cd、Hg、Pb在研究区土壤生态环境中的贡献率较高。综合四种方法可知,整个研究区土壤重金属的综合潜在生态风险处于轻微-中等生态风险危害水平,土壤环境质量总体良好。
Abstract:This is a paper in the field of mining environmental engineering. Contents of heavy metals in 40 soil samples from a mining area in the Southern Jiangxi Province were determined. Results suggest that average contents of Cu, Pb, Zn, Cr, Ni, Cd and Hg were all lower than the background values of soil heavy metals in the Jiangxi Province, while the content of Pb was higher than the background value. The significant positive correlations between Cu, Cr, Ni, and Cd, and Zn and Cd, and Ni, Cr, Cd, As, and Hg indicated that these heavy metals may have homologous or concomitant sources. The single pollution index method, Nemerow index method, pollution load index method, and potential ecological risk index method were used to evaluate the pollution degree of soil by heavy metals in study area. Results of the single pollution index method showed that the single element pollution degree decreased following the sequence of Pb > Cd > Zn, while the overall pollution degree was low. The Nemerow index method revealed that soils being heavily polluted by heavy metals were mainly distributed in the mining area and middle reaches of river. The mean value of heavy metal pollution coefficient calculated from the pollution load index method decreased following the sequence of Pb > Cd > Zn > Cr > Cu > Hg > Ni. The soil pollution load index was moderate. The potential ecological risk assessment revealed mild ecological risk in relevant of Cu, Pb, Zn, Cr, and Ni, while much higher ecological risk was observed regarding Cd and Hg. In combination of the four pollution evaluation methods, soils from the study area were at the mild to moderate ecological risk in relevant of the eight heavy metals, indicating relatively good soil quality in the study area.
-
-
表 1 单因子污染指数评价分级标准
Table 1. Classification standards for Single Factor Pollution Index evaluation
等级 区间范围 污染等级 1 Pi≤1 安全 2 1<Pi≤2 轻微污染 3 2<Pi≤3 中度污染 4 3<Pi 重度污染 表 2 Nemerow综合污染指数评价分级标准
Table 2. Classification standards for Nemerow comprehensive pollution index evaluation
等级 区间范围 污染等级 1 PN<0.7 安全 2 0.7<PN<1.0 警戒线 3 1.0<PN<2.0 轻微污染 4 2.0<PN<3.0 中度污染 5 3.0<PN 重度污染 表 3 污染负荷指数评价分级标准
Table 3. Classification standards for pollution load index evaluation
等级 区间范围 污染等级 1 PN<1 无污染 2 1≤PN<2 中度污染 3 2≤PN<3 强污染 4 3≤PN<3.0 极强污染 表 4 潜在生态风险指数评价分级标准
Table 4. Classification standards for potential ecological risk index evaluation
潜在生态风险 区间范围 潜在风险程度 <40
轻微 40≤ <80
中度 80≤ <160
强 160≤ <320
很强 320≤ 极强 RI RI<150 轻微 150≤RI<300 中度 300≤RI<600 强 600≤RI 很强 表 5 研究区土壤重金属含量分布值与背景值(n=40)/(mg·kg-1)
Table 5. Distribution parameters and background values of soil heavy metals in the study area
元素 含量范围 中值 均值 标准差 江西省
背景值筛选值 超标
件数超标
率/%Cu 1.24~34.5 8.11 12 10.5 20.8 150 10 25.0 Pb 41.7~296 102 106 50.1 32.1 70 31 77.5 Zn 31.9~137 60.2 67.6 25.8 69 200 16 40.0 Cr 8.39~209 20.3 28.4 33.5 48 150 5 12.5 Ni 1.04~27 7.69 8.44 6.68 19 60 3 7.20 Cd 0.02~0.65 0.09 0.13 0.13 0.1 0.3 15 37.5 As 1.11~7.17 2.64 3.14 1.56 10.4 40 0 0 Hg 0.0092~0.12 0.04 0.05 0.03 0.09 1.3 6 15.0 表 6 单因子污染指数评价结果(n = 40)
Table 6. Results of single factor pollution index evaluation
元素 污染指数 污染等级/% 最小值 最大值 平均值 安全 轻微污染 中等污染 重度污染 Cu 0.06 1.66 0.58 75 25 0 0 Pb 1.30 9.22 3.29 0 22.5 0 55 Zn 0.46 1.98 0.98 60 40 0 0 Cr 0.17 4.35 0.59 87.5 10 0 2.50 Ni 0.05 1.42 0.44 92.5 7.50 0 0 Cd 0.20 6.50 1.29 60 27.5 0 10 As 0.11 0.69 0.30 100 0 0 0 Hg 0.11 1.45 0.55 85 15 0 0 表 7 Nemerow综合污染指数评价结果
Table 7. Results of Nemerow comprehensive pollution index evaluation
污染程度 安全 警戒线 轻微污染 中等污染 重度污染 污染指数PN <0.7 0.7~1.0 1.2~2.0 2.0~3.0 >3.0 样本数 0 0 7 9 24 百分比/% 0 0 17.5 22.5 60 表 8 污染负荷指数评价结果
Table 8. Results of pollution load index evaluation
污染程度 无污染 中等污染 强污染 极强污染 污染指数P <1 1~2 2~3 ≥3 样本数 34 6 0 0 百分比/% 85 15 0 0 表 9
$ {{E}}_{{r}}^{{i}} $ 、RI统计值及潜在生态风险评价结果Table 9. Results of
$ {{E}}_{{r}}^{{i}} $ 、RI values and potential ecological risk index evaluation元素 潜在风险系数 污染等级/% 最小值 最大值 平均值 轻微 中等 强 很强 极强 Cu 0.30 8.29 2.89 100 0 0 0 0 Pb 6.50 46.1 16.5 97.5 2.5 0 0 0 Zn 0.46 1.98 0.98 100 0 0 0 0 Cr 0.35 8.70 1.18 100 0 0 0 0 Ni 0.27 7.11 2.22 100 0 0 0 0 Cd 6.00 195 38.7 72.5 17.5 7.50 2.50 0 As 1.07 6.89 3.02 100 0 0 0 0 Hg 4.38 58.1 22.1 85.0 15.0 0 0 0 综合潜在风险
系数RI30.2 237 87.5 85.0 15.0 0 0 0 -
[1] 仝双梅, 连国奇, 杨琴, 等. 矿区农田土壤重金属污染评价与研究[J]. 金属矿山, 2019, 516(6):189-194. TONG S M, LIAN G Q, YANG Q, et al. Assessment and research of heavy metals pollution in farmland soil from mining areas[J]. Metal Mine, 2019, 516(6):189-194.
TONG S M, LIAN G Q, YANG Q, et al. Assessment and research of heavy metals pollution in farmland soil from mining areas[J]. Metal Mine, 2019, 516(6): 189-194.
[2] Zhang J, Hua P, Krebs P. Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment[J]. Environmental Pollution, 2017, 228:158-168. doi: 10.1016/j.envpol.2017.05.029
[3] Fei X F, Lou Z H, Xiao R, et al. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models[J]. Science of The Total Environment, 2020, 747:141293. doi: 10.1016/j.scitotenv.2020.141293
[4] 赵慧, 何博, 王铁宇, 等. 我国南方典型城市土壤重金属污染特征及源汇关系分析[J]. 环境科学学报, 2019, 39(3):2231-2239. ZHAO H, HE B, WANG T Y, et al. Pollution characteristics of heavy metals and source-sink relationship in typical city of the South China[J]. Acta Scientiae Circumstantiae, 2019, 39(3):2231-2239.
ZHAO H, HE B, WANG T Y, et al. Pollution characteristics of heavy metals and source-sink relationship in typical city of the South China[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 2231-2239.
[5] Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS-based approach to identifyheavy metal sources in soils[J]. Environmental Pollution, 2001, 114(3):313-324. doi: 10.1016/S0269-7491(00)00243-8
[6] Wang S, Cai L M, Wen H H, et al. Spatial distribution and source apportionment of heavymetals in soil from a typical county-level city of Guangdong Province, China[J]. Science of The Total Environment, 2019, 655:92-101. doi: 10.1016/j.scitotenv.2018.11.244
[7] Yang Q, Li Z, Lu X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of The Total Environment, 2018, 642:690-700. doi: 10.1016/j.scitotenv.2018.06.068
[8] Huang Y, Li T, Wu C, et al. An integrated approach to assess heavy metal source apportionmentin peri-urban agricultural soils[J]. Journal of Hazardous Materials, 2015, 299:540-549. doi: 10.1016/j.jhazmat.2015.07.041
[9] Dong B, Zhang R, Gan Y, et al. Multiple methods for the identification of heavy metal sourcesin cropland soils from a resource-based region[J]. Science of The Total Environment, 2019, 651(Pt 2): 3127-3138.
[10] Liang J, Feng C, Zeng G, et al. Atmospheric deposition of mercury and cadmium impacts ontopsoil in a typical coal mine city, Lianyuan, China[J]. Chemosphere, 2017, 189:198-205. doi: 10.1016/j.chemosphere.2017.09.046
[11] 赵艳玲, 王亚云, 何厅厅, 等. 基于组合权区间欧式距离模型的重金属污染评价[J]. 金属矿山, 2013(3):132-136. ZHAO Y L, WANG Y Y, HE T T, et al. The evaluation of heavy metal pollution based on interval euclid distance model with combination weights[J]. Metal Mine, 2013(3):132-136.
ZHAO Y L, WANG Y Y, HE T T, et al. The evaluation of heavy metal pollution based on interval euclid distance model with combination weights[J]. Metal Mine, 2013(3): 132-136.
[12] 陈宇宁, 刘平辉, 高金栋. 江西省南丰蜜桔土壤重金属特征评价及源解析[J]. 科学技术与工程, 2021, 21(19):07965-11. CHEN Y N, LIU P H, GAO J D. Evaluation andsource analysis of heavy metals in the soil of tangerine in Nanfeng, Jiangxi Province[J]. Science Technology Engineering, 2021, 21(19):07965-11.
CHEN Y N, LIU P H, GAO J D. Evaluation andsource analysis of heavy metals in the soil of tangerine in Nanfeng, Jiangxi Province[J]. Science Technology Engineering, 2021, 21(19): 07965-11
[13] 刘应冬, 代力, 张卫华. 青海某金矿矿集区土壤重金属污染评价及综合利用讨论[J]. 矿产综合利用, 2018, 39(5):21-24. LIU Y D, DAI L, ZHANG W H. Assessment of soil heavy metals pollution and comprehensive utilization in a gold mine area in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(5):21-24.
LIU Y D, DAI L, ZHANG W H. Assessment of soil heavy metals pollution and comprehensive utilization in a gold mine area in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(5): 21-24. .
[14] 姚玉玲, 代力, 舒荣波, 等. 赣南某未开发离子型稀土矿区土壤环境质量评价[J]. 矿产综合利用, 2022(4):152-156+161. YAO Y L, DAI L, SHU R B, et al. Soil environmental quality assessment around the undeveloped ion adsorption type rare earth ore in Southern Jiangxi[J]. Multipurpose Utilization of Mineral Resources, 2022(4):152-156+161.
YAO Y L, DAI L, SHU R B, et al. Soil environmental quality assessment around the undeveloped ion adsorption type rare earth ore in Southern Jiangxi[J]. Multipurpose Utilization of Mineral Resources, 2022(4): 152-156+161.
[15] 卢君勇, 吴浪, 阳开龙, 等. 四川省马边老河坝磷矿重金属污染分析[J]. 矿产综合利用, 2022(2):187-193. LU J Y, WU L, YANG K L, et al. Analysis of heavy metal pollution in the environment of Laoheba phosphate mine in Mabian Region, Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2022(2):187-193.
LU J Y, WU L, YANG K L, et al. Analysis of heavy metal pollution in the environment of Laoheba phosphate mine in Mabian Region, Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 187-193.
[16] 庞妍, 同延安, 梁连友, 等. 矿区农田土壤重金属分布特征与污染风险研究[J]. 农业机械学报, 2014, 45(11):165-171. PANG Y, TONG Y N, LIANG L Y, et al. Study on distribution characteristics and pollution risk of heavy metals in farmland soil of mining area[J]. Journal of Agricultural Machinery, 2014, 45(11):165-171.
PANG Y, TONG Y N, LIANG L Y, et al. Study on distribution characteristics and pollution risk of heavy metals in farmland soil of mining area[J]. Journal of Agricultural Machinery, 2014, 45(11): 165-171.
[17] 周贺鹏, 胡洁. 离子型稀土矿化学溶浸影响因素及其调控[J]. 矿产综合利用, 2019(3):146-151. ZHOU H P, HU J. Influencing factors and control of chemicalleaching of ion-type rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2019(3):146-151.
ZHOU H P, HU J. Influencing factors and control of chemicalleaching of ion-type rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 146-151.
[18] 张博, 宁阳坤, 曹飞, 等. 世界稀土资源现状[J]. 矿产综合利用, 2018, 39(4):2-7. ZHANG B, NING Y K, CAO F, et al. Current situation of worldwide rare earth resources[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(4):2-7.
ZHANG B, NING Y K, CAO F, et al. Current situation of worldwide rare earth resources[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(4): 2-7. .
[19] 何淼, 周进生. 稀土综合利用新途径探究—华沙大学锡矿尾矿实验的启示[J]. 矿产综合利用, 2017, 38(5):24-29. HE M, ZHOU J S. New approach to the comprehensive utilization of rare earth-the revelation of the tin mine tailings test at the university of Warsaw[J]. Multipurpose Utilization of Mineral Resources, 2017, 38(5):24-29.
HE M, ZHOU J S. New approach to the comprehensive utilization of rare earth-the revelation of the tin mine tailings test at the university of Warsaw[J]. Multipurpose Utilization of Mineral Resources, 2017, 38(5): 24-29. .
[20] 蔺亚青, 胡方洁, 张军, 等. 赣南离子型稀土矿区土壤吸附铜的特征研究[J]. 应用化工, 2018, 487(3):434-437. LIN Y Q, HU F J, ZHANG J, et al. Adsorption features of copper in Gannan ion-type rare earth mining soil[J]. Applied Chemical Industry, 2018, 487(3):434-437. doi: 10.3969/j.issn.1671-3206.2018.03.004
LIN Y Q, HU F J, ZHANG J, et al. Adsorption features of copper in Gannan ion-type rare earth mining soil[J]. Applied Chemical Industry, 2018, 487(3): 434-437. doi: 10.3969/j.issn.1671-3206.2018.03.004
[21] 韩张雄, 万的军, 胡建平, 等. 土壤中重金属元素迁移转化规律及其影响因素[J]. 矿产综合利用, 2017, 38(6):2-6. HAN Z X, WAN D J, HU J P, et al. Migration and transformation of heavy metals in soil and its influencing factors[J]. Multipurpose Utilization of Mineral Resources, 2017, 38(6):2-6.
HAN Z X, WAN D J, HU J P, et al. Migration and transformation of heavy metals in soil and its influencing factors[J]. Multipurpose Utilization of Mineral Resources, 2017, 38(6): 2-6. .
[22] 高德政, 周开灿, 冯启明, 等. 川南硫铁矿开发中的环境污染与治理[J]. 矿产综合利用, 2001(4):23-27. GAO D Z, ZHOU K C, FENG Q M, et al. Environmental pollution and harness of exploitating pyrite in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2001(4):23-27.
GAO D Z, ZHOU K C, FENG Q M, et al. Environmental pollution and harness of exploitating pyrite in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2001(4): 23-27.
[23] 代力, 邓杰. 川南典型硫铁矿区土壤污染调查方法[J]. 矿产综合利用, 2022(3):113-120+147. DAI L, DENG J. Experimental study on investigation method of soil pollution in typical pyrite mining area in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(3):113-120+147.
DAI L, DENG J. Experimental study on investigation method of soil pollution in typical pyrite mining area in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022, (3): 113-120+147.
[24] Qiao W, Guo H M, He C, et al. Molecular evidence of arsenic mobility linked to biodegradable organic matter[J]. Environmental Science and Technology, 2020, 54(12):7280-7290. doi: 10.1021/acs.est.0c00737
[25] 高巍. 火焰原子吸收分光光度法测定矿石中的铜、铅、锌、钴、镍的含量[J]. 世界有色金属, 2019(4):182-183. GAO W. Determination of copper, lead, zinc, cobalt and nickel in ore by flame atomic absorption spectrophotometry[J]. Chemical Engineering, 2019(4):182-183.
GAO W. Determination of copper, lead, zinc, cobalt and nickel in ore by flame atomic absorption spectrophotometry[J]. Chemical Engineering, 2019(4): 182-183.
[26] 张渊, 洪秉信. 川南硫铁矿尾矿的工艺性质与综合利用[J]. 矿产综合利用, 2006(5):21-24. ZHANG Y, HONG B X. Technological properties andcomprehensive utilization of the pyrite tailings in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2006(5):21-24.
ZHANG Y, HONG B X. Technological properties andcomprehensive utilization of the pyrite tailings in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2006(5): 21-24.
[27] Qiao W, Guo H M, He C, et al. Unraveling roles of dissolved organic matter in high arsenic groundwater based on molecular and optical signatures[J]. Journal of Hazardous Materials, 2021, 406:124702. doi: 10.1016/j.jhazmat.2020.124702
[28] 李瑞娟, 周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用, 2021(4):36-40. LI R J, ZHOU B. Study on soil pollution evaluation and multipurpose utilization of copper tailings in Tongling, Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40.
LI R J, ZHOU B. Study on soil pollution evaluation and multipurpose utilization of copper tailings in Tongling, Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 36-40.
[29] 国家环境保护局. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
State Environmental Protection Administration. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
[30] 罗妍, 黄艺, 余大明, 等. 东北典型煤矿区重金属环境评价与分析[J]. 矿产综合利用, 2021(4):50-58. LUO Y, HUANG Y, YU D M, et al. Environmental assessment of heavy metals in typical coal mining areas in Northeast China[J]. Multipurpose Utilization of Mineral Resources, 2021(4):50-58.
LUO Y, HUANG Y, YU D M, et al. Environmental assessment of heavy metals in typical coal mining areas in Northeast China[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 50-58.
[31] Suresh G, Sutharsan P, Ramasamy V, et al. Assessment of spatial distribution and poteneial ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India[J]. Ecotoxicology and Environmental Safety, 2012, 84:117-124. doi: 10.1016/j.ecoenv.2012.06.027
[32] 王斐, 黄益宗, 王小玲, 等. 江西钨矿周边土壤重金属生态风险评价: 不同评价方法的比较[J]. 环境化学, 2015, 34(2):225-233. WANG F, HUANG Y Z, WANG X L, et al. Ecological risk assessment of heavy metals in surrounding soils of tungsten ores: Comparison of different evaluation methods[J]. Environmental Chemistry, 2015, 34(2):225-233. doi: 10.7524/j.issn.0254-6108.2015.02.2014061802
WANG F, HUANG Y Z, WANG X L, et al. Ecological risk assessment of heavy metals in surrounding soils of tungsten ores: Comparison of different evaluation methods[J]. Environmental Chemistry, 2015, 34(2): 225-233. doi: 10.7524/j.issn.0254-6108.2015.02.2014061802
[33] 生态环境部. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国标准出版社, 2018.
Ministy Of Ecology and Environment. Soil environment quality risk control standard for soilcontamination of agriculture land (On trail): GB 15618-2018[S]. Beijing: Standards Press of China, 2018.
[34] Qiao W, Guo H M, He C, et al. Identification of processes mobilizing organic molecules and arsenic in a thermal-confined Pliocene aquifer[J]. Water Research, 2021, 198:117140. doi: 10.1016/j.watres.2021.117140
[35] Li F, Zhang J D, Huang J H, et al. Heavy metals in road dust from Xiandao District, Changsha City, China: characteristics, health riskassessment, and integrated source identification[J]. Environmental Science and Pollution Research, 23(13): 13100-13113.
[36] Nemerow N L. Scientific stream pollution analysis[M]. Washington: Scripta Book Co. , 1974.
[37] 庞夙, 李廷轩, 王永东, 等. 县域农田土壤铜、锌、铬含量空间变异特征及其影响因子分析[J]. 中国农业科学, 2010, 43(4):737-743. PANG S, LI T X, WANG Y D, et al. Spatial variability and influencing factors of the concentrations of Cu, Zn, and Cr in cropland soil on county scales[J]. Scientia Agricultura Sinica, 2010, 43(4):737-743. doi: 10.3864/j.issn.0578-1752.2010.04.010
PANG S, LI T X, WANG Y D, et al. Spatial variability and influencing factors of the concentrations of Cu, Zn, and Cr in cropland soil on county scales[J]. Scientia Agricultura Sinica, 2010, 43(4): 737-743. doi: 10.3864/j.issn.0578-1752.2010.04.010
[38] Schuhmacher M, Domingo J, Garreta J. Pollutants emitted by a cement plant: health risks for the population living in the neighborhood[J]. Environmental Research, 95(2): 198-206.
[39] 何云峰, 朱广伟, 陈英旭, 等. 运河杭州段沉积物中重金属的潜在生态风险研究[J]. 浙江大学学报农业与生命科学版, 2002, 28(6):669-674. HE Y F, ZHU G W, CHEN Y X, et al. Study on the ecological risk of the sediment from the Hangzhou section of the Grand Canal, China, with potential ecological risk index[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2002, 28(6):669-674.
HE Y F, ZHU G W, CHEN Y X, et al. Study on the ecological risk of the sediment from the Hangzhou section of the Grand Canal, China, with potential ecological risk index[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2002, 28(6): 669-674.
[40] 董燕, 孙璐, 李海涛, 等. 雄安新区土壤重金属和砷元素空间分布特征及源解析[J]. 水文地质工程地质, 2021, 48(3):172-181. DONG Y, SUN L, LI H T, et al. Sources and spatial distribution of heavy metals and arsenic in soils from Xiongan New Area, China[J]. Hydrogeology & Engineering Geology, 2021, 48(3):172-181.
DONG Y, SUN L, LI H T, et al. Sources and spatial distribution of heavy metals and arsenic in soils from Xiongan New Area, China[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 172-181.
-