Process Mineralogy Study on a Skarn Type High Argillaceous Refractory Tungsten-Molybdenum Ore Deposit in Henan
-
摘要:
这是一篇工艺矿物学领域的论文。陕西某矽卡型钨钼矿矿石类型多样、钨钼品位变化大,精矿品位与回收率较难提高。本文通过显微镜观察、X射线衍射仪、扫描电镜能谱仪及矿物自动检测仪等分析技术,对该矿的物质组成、目的矿物嵌布特征、有价元素赋存状态等工艺矿物学参数进行了系统的研究,探索优化了选矿工艺方案。研究表明,该矿石中有价元素为钨和钼,目的矿物主要为白钨矿和辉钼矿,以皂石和蒙脱石为主的黏土矿物等含量较高,是影响钨钼浮选回收的主要有害矿物。白钨矿以粗~中粒嵌布为主,辉钼矿属于中~细粒不均匀嵌布类型,-0.02 mm难选粒级占有率高达31%,需要细磨才能单体解离。采用浮选分别回收矿石的辉钼矿和白钨矿,预计钼、钨精矿的理论品位分别为58%和67%,理论回收率分别为76%和92%左右。选矿工艺通过调整药剂制度,加强了对皂石、蒙脱石等易浮易泥化黏土矿物的分散与抑制,减少了其对钨、钼回收的影响。
Abstract:This is a paper in the field of process mineralogy. A silica-type tungsten and molybdenum mine in Shaanxi has diverse ore types and large variations in tungsten and molybdenum grades, and it is difficult to improve the concentrate grade and recovery. Multiple technics including microscopic observation, X-ray diffraction (XRD), scanning electron microscope energy dispersive spectrometer(SEM-EDS) and mineral liberation analyser (MLA) were adopted to study the mineral compositions, dissemination characteristics of target minerals and the distributions of valuable elements of the ore, and the beneficiation process scheme was explored and optimized. The results show that the valuable elements are tungsten and molybdenum, and the main target minerals are scheelite and molybdenite. The content of clay minerals such as soapstone and montmorillonite is high, which are the main harmful minerals affecting the flotation recovery of tungsten and molybdenum. Scheelite is mainly coarse- to medium-grained, and molybdenite is medium- to fine-grained. The proportion of -0.02 mm refractory particle size of molybdenite is up to 31%, which requires fine grinding to be liberated. The theoretical grade of molybdenum and tungsten concentrate by flotation of molybdenite and scheelite is expected to be 58% and 67%, and the theoretical recovery is about 76% and 92%, respectively. By adjusting the reagent system, the dispersion and inhibition of clay minerals such as saponite and montmorillonite, which are easy to float and slime, was strengthened in the beneficiation process, reducing the influence on the recovery of tungsten and molybdenum.
-
-
表 1 原矿化学成分分析结果/%
Table 1. Chemical composition of raw ore
WO3 Mo CaF2 SiO2 Fe2O3 CaO Al2O3 MgO MnO K2O Na2O TiO2 P2O5 S Cu Zn 0.105 0.067 2.03 47.58 17.48 19.59 5.09 2.07 1.18 0.55 0.44 0.27 0.21 1.70 0.02 0.01 表 2 原矿矿物组成及含量/%
Table 2. Mineral composition of raw ore
白钨矿 钼钙矿 辉钼矿 黄铁矿 磁黄铁矿 黄铜矿 斑铜矿 辉铜矿 闪锌矿 0.151 0.003 0.088 2.531 0.165 0.032 0.005 0.008 0.010 方铅矿 磁铁矿 褐铁矿 石英 长石 云母 辉石 石榴石 角闪石 0.002 1.065 0.299 17.891 6.229 1.276 6.618 44.599 0.900 阳起石 绿帘石 绿泥石 滑石 皂石 蒙脱石 伊利石 高岭石 沸石 0.347 0.659 0.960 0.401 4.709 1.840 0.186 0.326 0.634 葡萄石 萤石 方解石 白云石 菱铁矿 榍石 磷灰石 其他 合计 0.105 1.047 5.363 0.107 0.130 0.351 0.447 0.516 100.000 表 3 原矿筛分实验结果
Table 3. Screening test results of raw ore
粒级/mm 产率/% 品位/% 分布率/% Mo WO3 Mo WO3 +1.5 7.28 0.041 0.110 4.53 7.30 -1.5+1.0 27.59 0.042 0.080 17.57 20.12 -1.0+0.6 15.55 0.042 0.093 9.90 13.18 -0.6+0.2 16.76 0.057 0.094 14.49 14.36 -0.2+0.1 3.36 0.094 0.110 4.78 3.36 -0.1+0.075 3.54 0.138 0.150 7.41 4.84 -0.075+0.045 7.69 0.136 0.170 15.87 11.92 -0.045 18.24 0.092 0.150 25.45 24.93 合计 100.00 0.066 0.110 100.00 100.00 表 4 辉钼矿和白钨矿的解离度测定结果
Table 4. Liberation degree of scheelite and molybdenite
粒级/mm 产率/% 品位/% 回收率/% 解离度/% Mo WO3 Mo WO3 辉钼矿 白钨矿 +0.2 2.01 0.060 0.042 1.74 0.80 92.98 37.24 -0.2+0.1 21.20 0.110 0.034 33.67 6.79 88.44 85.09 -0.1+0.075 14.36 0.056 0.089 11.61 12.04 93.07 89.41 -0.075+0.045 17.58 0.058 0.110 14.73 18.23 95.00 94.85 -0.045+0.02 25.28 0.060 0.190 21.90 45.27 97.38 97.39 -0.02+0.01 8.07 0.059 0.099 6.88 7.53 99.15 99.58 -0.01 11.51 0.057 0.086 9.47 9.33 99.41 99.87 合计 100.00 0.069 0.106 100.00 100.00 93.76 95.05 表 5 钼、钨在各矿物中的分布
Table 5. Distribution of molybdenum and tungsten in minerals
矿物 矿物含量/% 元素含量/% 分布率/% Mo WO3 Mo WO3 辉钼矿 0.088 58.47 / 76.82 / 钼钙矿 0.003 43.42 5.82 1.94 0.16 白钨矿 0.151 6.74 67.31 15.19 92.19 磁性脉石 53.651 0.0038 0.0081 3.04 3.94 非磁脉石 33.313 0.0022 0.0023 1.09 0.70 黏土矿物 8.507 0.015 0.039 1.91 3.01 其他 4.287 / / / / 合计 100.000 0.067 0.110 100.00 100.00 表 6 钼钨浮选闭路实验指标
Table 6. Closed circuit indexes of molybdenum and tungsten flotation exploration test
产品名称 产率/% 品位/% 回收率/% Mo WO3 Mo WO3 钼粗精矿 0.59 8.32 0.193 73.27 1.09 钨粗精矿 2.58 0.338 3.35 13.00 82.31 尾矿 96.83 0.0095 0.018 13.73 16.60 原矿 100.00 0.067 0.105 100.00 100.00 -
[1] 蒋英, 梁冬云, 李波. 湖南某低品位钨矿工艺矿物学研究[J]. 中国钨业, 2019, 34(4):20-25. JIANG Y, LIANG D Y, LI B. Progress mineralogy study on a low grade tungsten ore deposit in Hunan[J]. China Tungsten Industry, 2019, 34(4):20-25.
JIANG Y, LIANG D Y, LI B. Progress mineralogy study on a low grade tungsten ore deposit in Hunan[J]. China Tungsten Industry, 2019, 34(4): 20-25.
[2] 张兴旺, 孙志勇. 陕西某钼矿工艺矿物学研究[J]. 矿产综合利用, 2021(5):186-192. ZHANG X W, SUN Z Y. Study on process mineralogy of a molybdenum ore in Shaanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):186-192.
ZHANG X W, SUN Z Y. Study on process mineralogy of a molybdenum ore in Shaanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 186-192.
[3] 彭如清. 中国钨钼资源现状与对外贸易态势[J]. 中国钼业, 2002, 26(4):3-7. PENG R Q. The situation of China tungsten- molybdenum resources and trade[J]. China Molybdenum Industry, 2002, 26(4):3-7.
PENG R Q. The situation of China tungsten- molybdenum resources and trade[J]. China Molybdenum Industry, 2002, 26(4): 3-7.
[4] 崔延遂, 卞孝东, 郭俊刚, 等. 河南栾川三道庄钼矿工艺矿物学研究[J]. 矿产保护与利用, 2011(1):36-39. CUI Y S, BIAN X D, GUO J G, et al. A study on the process mineralogy of Sandaozhuang molybdenum ore from Luanchuan in Henan Province[J]. Conservation and Utilization of Mineral Resources, 2011(1):36-39.
CUI Y S, BIAN X D, GUO J G, et al. A study on the process mineralogy of Sandaozhuang molybdenum ore from Luanchuan in Henan Province[J]. Conservation and Utilization of Mineral Resources, 2011(1): 36-39.
[5] 向君峰, 毛景文, 裴荣富, 等. 南泥湖—三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义[J]. 中国地质, 2012, 39(2):458-473. XIANG J F, MAO J W, PEI R F, et al. New geochronological data of granites and ores from the NannihuSandaozhuang Mo(W) deposit[J]. Geology in China, 2012, 39(2):458-473.
XIANG J F, MAO J W, PEI R F, et al. New geochronological data of granites and ores from the NannihuSandaozhuang Mo(W) deposit[J]. Geology in China, 2012, 39(2): 458-473.
[6] 韩江伟, 云辉, 胡红雷, 等. 河南栾川矿集区深部钨钼矿体特征及资源预测[J]. 金属矿山, 2020(11):141-151. HAN J W, YUN H, HU H L, et al. Deep ore characteristics of Luanchuan ore concentration area and resource prediction in Henan Province[J]. Metal Mine, 2020(11):141-151.
HAN J W, YUN H, HU H L, et al. Deep ore characteristics of Luanchuan ore concentration area and resource prediction in Henan Province [J]. Metal Mine, 2020, (11): 141-151.
[7] 何亚清, 张衡, 曹渊, 等. 河南省栾川县三道庄钼矿深部找矿前景浅析[J]. 中国钼业, 2020, 44(3):9-13. HE Y Q, ZHANG H, CAO Y, et al. Prospect for deep prospecting of Sandaozhuang molybdenum mine in Luanchuan County[J]. China Molybdenum Industry, 2020, 44(3):9-13.
HE Y Q, ZHANG H, CAO Y, et al. Prospect for deep prospecting of Sandaozhuang molybdenum mine in Luanchuan County [J]. China Molybdenum Industry, 2020, 44(3): 9-13.
[8] 赵德博, 万世明, 沈兴艳, 等. 海洋沉积物中黏土矿物的两种提取方法的对比[J]. 海洋地质与第四纪地质, 2015, 35(5):173-181. ZHAO D B, WANG S M, SHEN X Y, et al. A disscussion on methology to extract clay minerals from marine sediments[J]. Marine Geology & Quaternary Geology, 2015, 35(5):173-181.
ZHAO D B, WANG S M, SHEN X Y, et al. A disscussion on methology to extract clay minerals from marine sediments [J]. Marine Geology & Quaternary Geology, 2015, 35(5): 173-181.
-