-
摘要:
这是一篇矿物加工工程领域的论文。本研究以贵州某电厂粉煤灰为研究对象,综合运用多种测试手段对粉煤灰进行矿物组成及元素含量测定。结果表明,粉煤灰中主要矿物为莫来石、石英和铁矿物(5.46%的磁铁矿以及4.77%的赤铁矿),主要化学成分为SiO2、Al2O3和Fe2O3,含量分别达到36.88%、20.89%和14.58%。此外,原灰中锂的含量高达307 g/t,显示出一定的综合利用价值。粒度分析表明,粉煤灰75 μm以下累积产率高达83.4%,整体颗粒较细,且锂和铁主要富集在-75 μm的粒级中。采用还原焙烧的方法将粉煤灰中弱磁性的赤铁矿转化为强磁性的磁铁矿,再采用湿式磁选方法对粉煤灰进行除铁研究。结果表明:以粉煤灰中的残碳为还原剂,焙烧温度为700 ℃,焙烧时间为45 min,磁场强度为240 mT的条件下,采用“一次粗选-两次扫选”的磁选工艺,粉煤灰中铁去除率达到63.27%,同时锂的回收率达到80.31%,实现了铁杂质的选择性脱除。
Abstract:This is an essay in the field of mineral processing engineering. In this study, coal fly ash from a power plant in Guizhou was used as the research object. A series of test methods were comprehensively applied to the determination of the mineral composition and element content of coal fly ash. The results show that the main minerals in coal fly ash are mullite, quartz and iron minerals (5.46% magnetite and 4.77% hematite) , and the main chemical components are SiO2, Al2O3 and Fe2O3, with the contents of 36.88%, 20.89% and 14.58%, respectively. In addition, the content of lithium is as high as 307 g/t, which shows a certain comprehensive utilization value. Particle size analysis shows that the cumulative yield of coal fly ash below 75 μm is as high as 83.4%, which indicates that the overall particles are finer. Lithium and iron are mainly concentrated in the -75 μm fraction. Reduction roasting was used to convert the weakly magnetic hematite in coal fly ash into strong magnetic magnetite, and then the wet magnetic separation method was used to remove iron from the fly ash. The results show that with the residual carbon in coal fly ash as the reducing agent, the roasting temperature 700 ℃, the roasting time 45 min, and the magnetic field strength 240 mT, and followed by a magnetic separation process of "one roughing-two sweeping", the iron removal rate reaches 63.27%, and the lithium recovery is 80.31%.
-
Key words:
- Mineral processing engineering /
- Coal fly ash /
- Reduction roasting /
- Magnetic separation /
- Iron removal
-
-
表 1 粉煤灰试样粒度组成
Table 1. Particle gradation of coal fly ash sample
粒级/μm 产率/% Li含量/(g/t) Li分布率/% Fe含量/% Fe分布率/% 各粒级 筛上累积 各粒级 各粒级 筛上累积 各粒级 各粒级 筛上累积 +125 5.1 5.1 252.9 4.50 4.50 6.38 2.78 2.34 -125+75 11.5 16.6 249.1 10.00 14.50 7.65 7.53 10.31 -75+45 18.6 35.2 262.5 17.04 31.54 10.27 16.34 26.65 -45+38 6.8 42.0 276.9 6.57 38.11 13.81 8.03 34.68 -38 58.0 100.0 305.8 61.89 100.00 13.17 65.32 100.00 合计 100.0 286.6 100.00 11.69 100.00 表 2 粉煤灰试样中铁的物相定量分析
Table 2. Quantitative analysis of iron phase in coal fly ash sample
铁相态 金属量/% 分布率/% 磁铁矿中铁 5.46 44.35 赤褐铁矿中铁 4.77 38.75 硅酸铁中铁 1.57 12.75 碳酸铁中铁 0.42 3.41 硫化铁中铁 0.09 0.74 总铁 12.31 100.00 表 3 粉煤灰试样的化学成分/%
Table 3. Chemical composition of coal fly ash sample
SiO2 Al2O3 Fe2O3 TiO2 CaO SO3 K2O Na2O LOI C Li* 36.88 20.89 14.58 3.56 2.50 2.17 1.95 1.11 5.40 4.20 307 LOI为烧失量;*单位为g/t。 -
[1] JI R, ZHANG Z T, YAN C, et al. Preparation of novelceramic tiles with high Al2O3 content derived from coal fly ash[J]. Construction and Building Materials, 2016, 114:888-895. doi: 10.1016/j.conbuildmat.2016.04.014
[2] YAO Z T, XIA M S, SARKER P K, et al. A review of the alumina recovery from coal fly ash, with a focus in China[J]. Fuel, 2014, 120:74-85. doi: 10.1016/j.fuel.2013.12.003
[3] DING J, MA S H, SHEN S, et al. Research and industrialization progress of recovering alumina from fly ash: a concise review[J]. Waste Management, 2016, 60:375-387.
[4] 2020年全国大、中城市固体废物污染环境防治年报[R]. 生态环境部, 2020.
National report on prevention and control of environmentalpollution by solid wastein large and medium cities in 2020[R]. Ministry of Ecology and the Environment (MEP), 2020.
[5] HOCK J L, LICHTMAN D. The development of auto clavedcellular concrete[J]. Cellular Concrete, 1998, 71.
[6] 张金山, 李彦鑫, 曹永丹. 粉煤灰的综合利用现状及存在问题浅析[J]. 矿产综合利用, 2017(5):22-26. ZHANG J S, LI Y X, CAO Y D. Current situation of comprehensive utilization of fly ash and analysis of existing problems[J]. Multipurpose Utilization of Mineral Resources, 2017(5):22-26.
ZHANG J S, LI Y X, CAO Y D. Current situation of comprehensive utilization of fly ash and analysis of existing problems [J]. Multipurpose Utilization of Mineral Resources, 2017 (5): 22-26.
[7] 张汉鑫, 李慧, 谢珊珊, 等. 粉煤灰处理及资源利用[J]. 矿产综合利用, 2018(5):25-27. ZHANG H X, LI H, XIE S S, et al. Treatment and resource application of fly ash[J]. Multipurpose Utilization of Mineral Resources, 2018(5):25-27.
ZHANG H X, LI H, XIE S S, et al. Treatment and resource application of fly ash[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 25-27.
[8] HERN N S, CHIMENOS J M, FERN NDEZ AI, et al. Ion flotation of germanium from fly ash aqueous leachates[J]. Chemical Engineering Journal, 2006, 118(1-2):69-75. doi: 10.1016/j.cej.2006.01.012
[9] TORRALVO F A, C Fernández-Pereira. Recovery of germanium from real fly ash leachates by ion-exchange extraction[J]. Minerals Engineering, 2011, 24(1):35-41. doi: 10.1016/j.mineng.2010.09.004
[10] 王涛, 张新军. 煤中伴生矿产赋存状态及提取方法综述[J]. 矿产综合利用, 2019(4):21-25. WANG T, ZHANG X J. Summary of occurrence and extraction methods of associated minerals in coal[J]. Multipurpose Utilization of Mineral Resources, 2019(4):21-25.
WANG T, ZHANG X J. Summary of occurrence and extraction methods of associated minerals in coal[J]. Multipurpose Utilization of Mineral Resources, 2019(4) : 21-25.
[11] DAIS F, YAN X Y, WARD C R, et al. Valuable elements in Chinese coals: a review[J]. International Geology Review, 2018, 60(5-6):590-620. doi: 10.1080/00206814.2016.1197802
[12] QIN S J, ZHAO C L, LI Y H, et al. Review of coal as a promising source of lithium[J]. International Journal of Oil Gas and Coal Technology, 2015, 9(2):215-229. doi: 10.1504/IJOGCT.2015.067490
[13] LI S Y, BO P H, KANG L W, et al. Activation pretreatment and leaching process of high-alumina coal fly ash to extract lithium and aluminum[J]. Metals-Open Access Metallurgy Journal, 2020, 10(7):893.
[14] 王腾飞, 张金山, 李侠, 等. 碱法提取高铝粉煤灰中氧化铝的研究进展[J]. 矿产综合利用, 2019(1):16-21. WANG T F, ZHANG J S, LI X, et al. Research progress of extracting alumina in alkali method from high- alumina coal fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(1):16-21.
WANG T F, ZHANG J S, LI X, et al. Research progress of extracting alumina in alkali method from high- alumina coal fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 16-21.
[15] 王志明. 粉煤灰酸法提取氧化铝过程除铁技术研究进展[J]. 化工管理, 2020(27):112-113. WANG Z M. Research progress of iron removal technology in the process of extracting alumina from fly ash by acid method[J]. Chemical Enterprise Management, 2020(27):112-113.
WANG Z M. Research progress of iron removal technology in the process of extracting alumina from fly ash by acid method[J]. Chemical Enterprise Management, 2020(27): 112-113.
[16] 陈铁军, 庄骏, 展礼仁, 等. 粉煤灰干湿联合磁选提铁试验研究[J]. 矿冶工程, 2017, 37(2):60-63. CHEN T J, ZHUANG J, ZHAN L R, et al. Extraction of iron from fly ash by wet-dry magnetic separation[J]. Mining and Metallurgical Engineering, 2017, 37(2):60-63.
CHEN T J, ZHUANG J, ZHAN L R, et al. Extraction of iron from fly ash by wet-dry magnetic separation[J]. Mining and Metallurgical Engineering, 2017, 37(2): 60-63.
[17] 孙少博, 张永锋, 崔景东, 等. 粉煤灰高值化利用中的除铁工艺[J]. 化工新型材料, 2015, 43(1):223-225. SUN S B, ZHANG Y F, CUI J D, et al. Process of iron removal from fly ash in use of high value[J]. New Chemical Materials, 2015, 43(1):223-225.
SUN S B, ZHANG Y F, CUI J D, et al. Process of iron removal from fly ash in use of high value [J]. New Chemical Materials, 2015, 43(1): 223-225.
[18] GAO X, ZHOU T, PENG B, et al. Selective reduce roasting–magnetic separation towards efficient and cleaning removal of iron values from bauxite residual[J]. Canadian Metalurgical Quarterly, 2019, 58(4):410-418. doi: 10.1080/00084433.2019.1619060
[19] 刘康. 粉煤灰硫酸焙烧法提取氧化铝过程的研究[D]. 北京: 北京科技大学, 2015.
LIU K. Process study of extracting alumina from coal fly ash using sulfuric acid roasting method[D]. Beijing: Beijing University of Science and Technology , 2015.
[20] 杨权成, 马淑花, 谢华, 等. 高铝粉煤灰提取氧化铝的研究进展[J]. 矿产综合利用, 2012(3):3-7. YANG Q C, MA S H, XIE H, et al. Research progress of extracting alumina from high-alumina fly ash[J]. Multipurpose Utilization of Mineral Resources, 2012(3):3-7.
YANG Q C, MA S H, XIE H, et al. Research progress of extracting alumina from high-alumina fly ash[J]. Multipurpose Utilization of Mineral Resources, 2012 (3): 3-7.
[21] VASSILEV S V, VASSILEVA C G. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour[J]. Fuel, 2007, 86(10-11):1490-1512. doi: 10.1016/j.fuel.2006.11.020
[22] 邵培. 高铝煤与煤灰中Li-Ga-REE等多元素共生组合特征及协同分离[D]. 徐州: 中国矿业大学, 2019.
SHAO P. Paragenetic association and synergistic separation of Li-Ga-REE multielements in high-alumina coal and coal ash: acase study of Datong coalfield[D]. Xuzhou: China University of Mining and Technology, 2019.
[23] 徐红, 陈小明, 徐光平. 华能南京电厂粉煤灰中微珠的矿物相特征及形成机理探讨[J]. 高校地质学报, 2000(1):80-88. XU H, CHEN X M, XU G P. Discussion on the mineral phase characteristics and formation mechanism of microbeads in the fly ash of Huaneng Nanjing Power Plant[J]. Geological Journal of China Universities, 2000(1):80-88.
XU H, CHEN X M, XU G P. Discussion on the mineral phase characteristics and formation mechanism of microbeads in the fly ash of Huaneng Nanjing Power Plant[J]. Geological Journal of China Universities, 2000(1): 80-88.
-