-
摘要:
这是一篇矿物加工工程领域的论文,研究了内蒙古鄂尔多斯市凯达煤样的粒度特征和矿物组成,并在前期单因素实验结果的基础上,采用正交实验考查了叶轮转速、充气量、捕收剂和起泡剂的用量对浮选完善指标和可燃体回收率的影响。最终采用“一粗一精”浮选工艺流程对正交实验的较优方案进行进一步研究,结果表明:各因素主次顺序为起泡剂用量>捕收剂用量>叶轮转速>充气量;正交实验所得的较优方案为A2B2C3D3,即起泡剂用量800 g/t、捕收剂用量1600 g/t、矿浆浓度60 g/L、叶轮转速1800 r/min、充气量0.175 m3/(m2/min);在较佳条件下,经过“一粗一精”浮选工艺流程,最终得到了产率49.41%、灰分8.70%的精煤和产率50.59%、灰分74.15%的尾煤。
Abstract:This is an essay in the field of mineral processing engineering. In this essay, the particle size characteristics and mineral composition of the Kaida coal sample in Ordos City, Inner Mongolia were studied. Meanwhile, based on the results of the previous single factor test, the orthogonal test was used to investigate the impeller speed, aeration amount, the dosage of the collecting agent and foaming agent on the flotation perfection index and the recovery rate of combustible material. Finally, the "one roughing and one cleaning" flotation process was used to further study the optimal scheme of the orthogonal experiment. The results show that the primary and secondary order of the factors is the dosage of foaming agent > the dosage of collector > the impeller speed > the aeration dosage. The optimal scheme obtained from the orthogonal experiment is A2B2C3D3, that is, the dosage of frother is 800 g/t, the dosage of collector is 1600 g/t, the slurry concentration is 60 g/L, the impeller speed is 1800 r/min, and the aeration dosage is 0.175 m3/(m2/min). Under the optimal conditions, after the "one roughing and one cleaning" flotation process, a clean coal with yield of 49.41%, ash of 8.70%, and a tailing coal with yield of 50.59%, ash of 74.15% were obtained.
-
-
表 1 煤样矿物组成分析结果/%
Table 1. Timed-release analysis results of coal sample
石英 钾长石 斜长石 方解石 普通辉石 鳞石英 粘土矿物 35.3 3.3 9.4 1.8 2.3 7.5 40.4 表 2 煤样筛分分析
Table 2. Coal sample screening analysis
粒级
/mm产率
/%灰分
/%
筛上累计
筛下累计产率/% 灰分/% 产率/% 灰分/% -0.5+0.25 10.25 3.51 10.25 3.51 100.00 42.41 -0.25+0.125 11.37 4.98 21.62 4.28 89.75 46.85 -0.125+0.074 9.12 14.49 30.74 7.31 78.38 52.93 -0.074+0.045 9.84 37.26 40.57 14.57 69.26 57.99 -0.045 59.43 61.42 100.00 42.41 59.43 61.42 合计 100.00 42.41 表 3 因素水平
Table 3. Factor level table
水平 因素 A B C D 叶轮转速/
(r/min)充气量/
(m3/(m2/min))捕收剂用量/
(g/t)起泡剂用量/
(g/t)1 1600 0.15 800 400 2 1800 0.175 1200 600 3 2000 0.2 1600 800 表 4 正交实验安排及分析
Table 4. Orthogonal test arrangement and analysis
实验号 列号 叶轮转
速/(r/min)充气量/
(m3/(m2/min))捕收剂
用量g/t起泡剂
用量g/t可燃体
回收率ε/%浮选完善
指标ηWf/%1 1 1 1 1 43.45 34.56 2 1 2 2 2 68.64 52.66 3 1 3 3 3 82.22 54.91 4 2 1 2 3 82.69 55.71 5 2 2 3 1 57.77 45.46 6 2 3 1 2 70.87 53.34 7 3 1 3 2 77.56 54.69 8 3 2 1 3 80.84 52.99 9 3 3 2 1 53.68 41.57 可燃体
回收率K1 194.31 203.70 195.17 154.90 K2 211.32 207.25 205.01 217.07 K3 212.09 206.77 217.54 245.75 k1 64.77 67.90 65.06 51.63 k2 70.44 69.08 68.34 72.36 k3 70.70 68.92 72.51 81.92 极差 5.93 1.18 7.46 30.28 优方案1 A3 B2 C3 D3 83.88 53.80 浮选完
善指标K1 142.13 144.95 140.89 121.59 K2 154.51 151.11 149.94 160.68 K3 149.25 149.82 155.06 163.61 k1 47.38 48.32 46.96 40.53 k2 51.50 50.37 49.98 53.56 k3 49.75 49.94 51.69 54.54 极差 4.13 2.05 4.72 14.01 优方案2 A2 B2 C3 D3 84.82 54.95 表 5 正交实验各组结果
Table 5. Orthogonal experimental results
实验号1 2 3 4 5 6 7 8 9 优方案1 优方案2 精煤 产率/% 29.01 46.62 59.26 59.40 38.76 48.57 54.70 58.68 36.30 61.38 61.85 灰分/% 12.82 14.33 19.27 18.99 13.27 15.09 17.49 19.84 13.95 20.49 20.20 尾煤 产率/% 70.99 53.38 40.74 40.60 61.24 51.43 45.30 41.32 63.70 38.62 38.15 灰分/% 53.86 66.47 74.37 75.68 60.50 67.29 71.67 73.38 57.54 76.72 76.81 合计灰分/% 41.95 42.16 41.72 42.01 42.20 41.94 42.03 41.96 41.72 42.20 41.79 表 6 “一粗一精”浮选实验结果
Table 6. Results of one roughing and one cleaning flotation test
实验号
精煤
尾煤
合计产率/% 灰分/% 产率/% 灰分/% 产率/% 灰分/% A2B2C3D3 49.41 8.70 50.59 74.15 100.00 41.81 -
[1] 郭丽敏, 王怀法. 非离子表面活性剂对高灰细粒难浮煤泥浮选促进作用研究[J]. 矿产综合利用, 2018(4):96-100. GUO L M, WANG H F. Study on the promotion of non-ionic surfactants on the flotation of high-ash fine-grained coal slime[J]. Multipurpose Utilization of Mineral Resources, 2018(4):96-100.
GUO L M, WANG H F. Study on the promotion of non-ionic surfactants on the flotation of high-ash fine-grained coal slime [J]. Multipurpose Utilization of Mineral Resources, 2018 (4): 96-100.
[2] 宋帅, 樊玉萍, 马晓敏, 等. 煤泥水中煤与不同矿物相互作用的模拟研究[J]. 矿产综合利用, 2020(1):168-172. SONG S, FAN Y P, MA X M, et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources, 2020(1):168-172.
SONG S, FAN Y P, MA X M, et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 168-172.
[3] 程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3):48-55. CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55.
CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 48-55.
[4] 于跃先, 马力强, 张仲玲, 等. 煤泥浮选过程中的细泥夹带与罩盖机理[J]. 煤炭学报, 2015, 40(3):652-658. YU Y X, MA L Q, ZHANG Z L, et al. The mechanism of fine mud entrainment and cover in the process of slime flotation[J]. Journal of China Coal Society, 2015, 40(3):652-658.
YU Y X, MA L Q, ZHANG Z L, et al. The mechanism of fine mud entrainment and cover in the process of slime flotation [J]. Journal of China Coal Society, 2015, 40(3): 652-658.
[5] 宋云霞, 魏昌杰. 难浮煤泥二次浮选工艺研究与应用[J]. 煤炭工程, 2017, 49(7):93-96. SONG Y X, WEI C J. Research and application of secondary flotation process for difficult-to-float coal slime[J]. Coal Engineering, 2017, 49(7):93-96.
SONG Y X, WEI C J. Research and application of secondary flotation process for difficult-to-float coal slime[J]. Coal Engineering, 2017, 49(7): 93-96.
[6] A T G, B N A. Statistical evaluation of flotation and entrainment behavior of an artificial ore[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1):199-205. doi: 10.1016/S1003-6326(11)61161-8
[7] Sripriya R, Rao P, Choudhury B R. Optimisation of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques[J]. International Journal of Mineral Processing, 2003, 68(1-4):109-127. doi: 10.1016/S0301-7516(02)00063-7
[8] Oats W J, Ozdemir O, Nguyen A V. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation[J]. Minerals Engineering, 2010, 23(5):413-419. doi: 10.1016/j.mineng.2009.12.002
[9] 张晓鹏. 高灰细泥对浮选精煤质量的影响分析[J]. 煤炭加工与综合利用, 2017(3):30-34. ZHANG X P. Analysis of the influence of high ash fine mud on the quality of flotation clean coal[J]. Coal Processing and Comprehensive Utilization, 2017(3):30-34.
ZHANG X P. Analysis of the influence of high ash fine mud on the quality of flotation clean coal[J]. Coal Processing and Comprehensive Utilization, 2017(3): 30-34.
[10] 陈智超, 李志红, 樊民强. 高细泥含量难浮煤泥的反、正两段浮选工艺[J]. 中国煤炭, 2015(7):95-99. CHEN Z C, LI Z H, FAN M Q. The reverse and positive two-stage flotation process of high-fine mud content and difficult-to-float coal slime[J]. China Coal, 2015(7):95-99.
CHEN Z C, LI Z H, FAN M Q. The reverse and positive two-stage flotation process of high-fine mud content and difficult-to-float coal slime[J]. China Coal, 2015(7): 95-99.
[11] 张龙鑫, 效妍, 倪超. 高灰难浮煤泥二次浮选试验研究[J]. 煤炭工程, 2014, 46(2):22-24. ZHANG L X, XIAO Y, NI C. Experimental study on secondary flotation of high ash and difficult-to-float coal slime[J]. Coal Engineering, 2014, 46(2):22-24.
ZHANG L X, XIAO Y, NI C. Experimental study on secondary flotation of high ash and difficult-to-float coal slime[J]. Coal Engineering, 2014, 46(2): 22-24.
[12] 刘炯天, 樊民强. 试验研究方法[M]. 徐州: 中国矿业大学出版社, 2011.
LIU J T, FAN M Q. Experimental research methods [M]. Xuzhou: China University of Mining and Technology Press, 2011.
-