昭通褐煤浮选及腐植酸提取实验

陈鹏, 白新伟, 李远, 张谌虎, 王市委, 陈瑶瑶. 昭通褐煤浮选及腐植酸提取实验[J]. 矿产综合利用, 2023, 44(6): 169-175. doi: 10.3969/j.issn.1000-6532.2023.06.026
引用本文: 陈鹏, 白新伟, 李远, 张谌虎, 王市委, 陈瑶瑶. 昭通褐煤浮选及腐植酸提取实验[J]. 矿产综合利用, 2023, 44(6): 169-175. doi: 10.3969/j.issn.1000-6532.2023.06.026
Chen Peng, Bai Xinwei, Li Yuan, Zhang Chenhu, Wang Shiwei, Chen Yaoyao. Flotation and Humic Acid Extraction Test of Zhaotong Lignite[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 169-175. doi: 10.3969/j.issn.1000-6532.2023.06.026
Citation: Chen Peng, Bai Xinwei, Li Yuan, Zhang Chenhu, Wang Shiwei, Chen Yaoyao. Flotation and Humic Acid Extraction Test of Zhaotong Lignite[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 169-175. doi: 10.3969/j.issn.1000-6532.2023.06.026

昭通褐煤浮选及腐植酸提取实验

  • 基金项目: 贵州省教育厅自然科学基金资助项目(黔教合KY字[2019]140);六盘水市重点实验室(52020-2019-05-04,52020-2019-05-06);六盘水师范学院自然科学基金项目(LPSSY201901, LPSSY201802);六盘水师范学院硕士学位点培育项目(LPSSYSSDPY201702);六盘水师范学院卓越人才培养计划项目(LPSSYzyjypyjh202001);六盘水师范学院教学改革项目(LPSSYjg2016)
详细信息
    作者简介: 陈鹏(1987-),男,副教授,主要从事矿物加工与矿物材料方面的研究
  • 中图分类号: TD94;TQ536.9

Flotation and Humic Acid Extraction Test of Zhaotong Lignite

  • 这是一篇矿物加工工程领域的论文。腐植酸是昭通褐煤的重要组成部分,为了高效地提取腐植酸,采用正浮选、反浮选工艺探索了昭通褐煤的较优浮选条件,并分别利用氧解法、碱溶酸析法设计正交实验,对浮选精煤进行腐植酸提取,探索了腐植酸提取的较优条件。实验结果表明:正浮选捕收剂消耗量大,在司盘80进行表面改性的条件下,浮选精煤产率较高为26.64%,灰分较低为20.08%;反浮选较佳条件为十二胺5 kg/t、糊精3 kg/t、起泡剂260 g/t,较佳浮选指标为浮选精煤产率84.35%、灰分20.52%,浮选尾煤产率15.65%、灰分36.75%,浮选完善指标12.08;氧解法较佳的提取条件为H2O2浓度0.7 mol/L、H2O2活化时间35 min、NaOH浓度0.3 mol/L、NaOH浸泡时间30 min,腐植酸提取率37.14%;碱溶酸析法较佳的提取条件为HCl浓度10%、HCl活化时间30 min、NaOH浓度0.7 mol/L、NaOH浸泡时间30 min,提取率43.80%。反浮选相对正浮选可以获得更高产率的高灰浮选精煤,碱溶酸析法提取昭通褐煤的腐植酸时,提取率更高。

  • 加载中
  • 图 1  昭通褐煤正浮选流程

    Figure 1. 

    图 2  昭通褐煤反浮选流程

    Figure 2. 

    图 3  碱溶酸析法腐植酸提取流程

    Figure 3. 

    图 4  氧解法腐植酸提取流程

    Figure 4. 

    表 1  昭通褐煤煤泥粒度组成

    Table 1.  Particle size composition of Zhaotong lignite slime

    粒级/mm产率/%灰分/%筛上累计筛下累计
    产率/%灰分/%产率/%灰分/%
    -0.50+0.2535.2122.5935.2122.59100.0023.29
    -0.25+0.12519.4222.4154.6322.5364.7923.67
    -0.125+0.07518.3122.7672.9422.5845.3724.21
    -0.075+0.04513.3222.6486.2622.5927.0625.20
    -0.04513.7427.68100.0023.2913.7427.68
    合计100.0023.29
    下载: 导出CSV

    表 2  昭通褐煤煤泥密度组成

    Table 2.  Density composition of Zhaotong lignite slime

    密度级/(g/cm3)产率/%灰分/%浮物累计沉物累计
    产率/%灰分/%产率/%灰分/%
    <1.3029.2519.5329.2519.53100.0023.58
    1.30~1.4055.6321.1184.8820.5770.7525.26
    1.40~1.506.5828.4691.4621.1315.1240.53
    1.50~1.602.9136.4794.3721.618.5449.84
    1.60~1.802.1346.0896.5022.155.6356.75
    >1.803.5063.24100.0023.583.563.24
    小计100.0023.58
    下载: 导出CSV

    表 3  昭通褐煤煤泥正浮选实验结果

    Table 3.  Positive flotation test results of Zhaotong lignite slime

    司盘80
    /(kg/t)
    捕收剂
    /(kg/t)
    起泡剂
    /(g/t)
    浮选精煤/%浮选尾煤/%计算煤泥
    灰分/%
    γAdγAd
    20202608.6722.4391.3323.6423.54
    3010.0222.3589.9823.3123.21
    4011.8621.9388.1423.4223.24
    402026011.2422.0288.7623.8123.61
    4012.9620.0887.0423.8723.38
    6026.6421.1573.3623.9823.23
    下载: 导出CSV

    表 4  昭通褐煤煤泥反浮选多因素逐项实验结果

    Table 4.  Multi - factor test results of reverse flotation of Zhaotong lignite slime

    十二胺/(kg/t)糊精/(kg/t)起泡剂/(g/t)精煤/%尾煤/%计算煤泥灰分/%浮选完善指标
    γAdγAd
    5326082.6221.0117.3833.0723.119.75
    766.8320.6533.1727.8823.059.04
    971.5920.6328.4129.8923.2610.55
    9126063.4821.1136.5226.7523.177.35
    372.9820.6327.0230.7523.3611.15
    571.5920.6228.4129.6223.1810.28
    9313081.0220.5318.9834.623.2012.14
    26071.5920.6328.4129.0523.029.66
    39075.9320.7724.0731.2423.2910.71
    下载: 导出CSV

    表 5  昭通褐煤煤泥反浮选正交实验结果

    Table 5.  Orthogonal test results of reverse flotation of Zhaotong lignite slime

    实验序号十二胺/(kg/t)糊精/(kg/t)起泡剂/(g/t)精煤/%尾煤/%计算煤泥灰分/%浮选完善指标
    γAdγAd
    15113082.2921.0417.7132.5223.079.43
    25326084.3520.5215.6536.7523.0612.08
    35539085.7820.9714.2236.0323.1110.34
    47139083.0521.1516.9532.7923.129.22
    57313081.5221.0218.4833.0423.2410.15
    67526086.4921.1513.5134.7222.988.96
    79126066.8620.9833.1427.9723.308.67
    89339082.3420.9117.6633.0323.059.94
    99513084.9721.2615.0332.9223.018.41
    K131.8427.3127.98
    K228.3332.1629.70
    K327.0127.7029.49
    极差4.834.851.72
    主次顺序糊精>十二胺>起泡剂
    各因素较佳水平53260
    较佳水平搭配53260
    下载: 导出CSV

    表 6  碱溶酸析法腐植酸提取正交实验结果

    Table 6.  Orthogonal test results of humic acid extraction by alkali-soluble acid separation

    实验序号HCl浓度
    /%
    HCl活化
    时间/min
    NaOH浓度
    /(mol/L)
    NaOH浸泡
    时间/min
    提取率/%
    15200.74022.73
    25250.1203.52
    35300.55027.91
    45350.33018.5
    510200.53021.54
    610250.35014.06
    710300.72030.03
    810350.14021.49
    915200.1505.68
    1015250.73032.69
    1115300.34021.56
    1215350.52021.89
    1320200.32023.27
    1420250.54017.58
    1520300.13029.9
    1620350.7504.12
    K172.6673.2260.5978.71
    K287.1267.8577.39102.63
    K381.82109.4088.9283.36
    K474.8766.0089.5751.77
    极差14.4643.4028.9850.86
    主次顺序NaOH浸泡时间>HCl活化时间>NaOH浓度>HCl浓度
    较佳水平10300.730
    较佳水平搭配10300.730
    注:较佳水平搭配经验证而来。
    下载: 导出CSV

    表 7  氧解法腐植酸提取正交实验结果

    Table 7.  Orthogonal test results of humic acid extraction by oxylysis

    实验序号H2O2浓度
    /(mol/L)
    H2O2活化
    时间/min
    NaOH浓度
    /(mol/L)
    NaOH浸泡
    时间/min
    提取率/%
    10.1200.74018.81
    20.1250.1205.10
    30.1300.55024.80
    40.1350.33025.29
    50.3200.53020.89
    60.3250.35026.80
    70.3300.7204.29
    80.3350.14027.52
    90.5200.1505.55
    100.5250.73028.36
    110.5300.34021.99
    120.5350.52026.44
    130.7200.32027.23
    140.7250.54016.62
    150.7300.13016.30
    160.7350.75027.77
    K174.0072.4854.4763.06
    K279.5076.88101.3190.84
    K382.3467.3888.7584.94
    K487.92107.0279.2384.92
    极差13.9239.6446.8427.78
    主次顺序NaOH浓度>H2O2活化时间>NaOH浸泡时间>H2O2浓度
    较佳水平0.7350.330
    较佳水平搭配0.7350.330
    注:较佳水平搭配经验证而来。
    下载: 导出CSV
  • [1]

    周云龙, 姚灏, 王迪, 等. 褐煤预干燥发电机组特性仿真对比及投资经济性分析[J]. 热能动力工程, 2021, 36(1):100-107. ZHOU Y L, YAO H, WANG D, et al. Simulation comparison and investment economy analysis of generation units with lignite pre-drying system[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(1):100-107.

    ZHOU Y L, YAO H, WANG D, et al. Simulation comparison and investment economy analysis of generation units with lignite pre-drying system[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(1): 100-107.

    [2]

    杨芊, 杨晓龙, 刘佳金, 等. 褐煤作为气化原料在煤化工企业中的应用[J]. 煤炭加工与综合利用, 2020(6):51-54+58+5. YANG Q, YANG X L, LIU J J, et al. Application of lignite as gasification raw material in coal chemical enterprises[J]. Coal Processing & Comprehensive Utilization, 2020(6):51-54+58+5.

    YANG Q, YANG X L, LIU J J, et al. Application of lignite as gasification raw material in coal chemical enterprises[J]. Coal Processing & Comprehensive Utilization, 2020(6): 51-54+58+5.

    [3]

    李建涛, 刘向荣, 杨杰, 等. 真菌筛选及降解光-氧氧化褐煤工艺条件优化研究[J]. 矿产综合利用, 2020(5):82-86+157. LI J T, LIU X R, YANG J, et al. Screening of fungi and condition optimization for biodegradation of photooxidized lignite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):82-86+157.

    LI J T, LIU X R, YANG J, et al. Screening of fungi and condition optimization for biodegradation of photooxidized lignite [J]. Multipurpose Utilization of Mineral Resources, 2020(5): 82-86+157.

    [4]

    张传祥, 张效铭, 程敢. 褐煤腐植酸提取技术及应用研究进展[J]. 洁净煤技术, 2018, 24(1):6-12. ZHANG C X, ZHANG X M, CHENG G. Research progress on extraction technology and application of lignite humic acid[J]. Clean Coal Technology, 2018, 24(1):6-12.

    ZHANG C X, ZHANG X M, CHENG G. Research progress on extraction technology and application of lignite humic acid [J]. Clean Coal Technology, 2018, 24(1): 6-12.

    [5]

    张远琴, 李艳红, 常丽萍, 等. 昭通褐煤制备农业腐植酸的提取工艺条件优化[J]. 化学世界, 2021, 62(3):176-182. ZHANG Y Q, LI Y H, CHANG L P, et al. Optimization of extraction process conditions for preparing agricultural humic acid from Zhaotong lignite[J]. Chemical World, 2021, 62(3):176-182.

    ZHANG Y Q, LI Y H, CHANG L P, et al. Optimization of extraction process conditions for preparing agricultural humic acid from Zhaotong lignite[J]. Chemical World, 2021, 62(3): 176-182.

    [6]

    桂夏辉, 邢耀文, 连露露, 等. 煤泥浮选过程强化之三——低阶/氧化煤浮选界面强化篇[J]. 选煤技术, 2017(3):87-91+96. GUI X H, XING Y W, LIAN L L, et al. Fine coal flotation process intensification-part III: interface intensification of low-rank and oxidized coal[J]. Coal Preparation Techenology, 2017(3):87-91+96.

    GUI X H, XING Y W, LIAN L L, et al. Fine coal flotation process intensification-part III: interface intensification of low-rank and oxidized coal [J]. Coal Preparation Techenology, 2017(3): 87-91+96.

    [7]

    Cheng Gan, Li Ziyou, Cao Yijun, et al. Research progress in lignite flotation intensification[J]. International Journal of Coal Preparation and Utilization, 2020, 40(1):59-76. doi: 10.1080/19392699.2018.1541894

    [8]

    Kurniati E, Muljani S, Virgani D G, et al. Humic acid isolations from lignite by ion exchange method[J]. Journal of Physics Conference, 2018, 953:012234. doi: 10.1088/1742-6596/953/1/012234

    [9]

    谢才秀, 张永菊, 龙涛, 等. 不同实验设计方法在高灰分煤泥浮选优化实验中的应用[J]. 矿产综合利用, 2021(1):72-76+56. XIE C X, ZHANG Y J, LONG T, et al. The application of different experimental design method in the flotation optimization experiments of high ash coal slime[J]. Multipurpose Utilization of Mineral Resources, 2021(1):72-76+56.

    XIE C X, ZHANG Y J, LONG T, et al. The application of different experimental design method in the flotation optimization experiments of high ash coal slime [J]. Multipurpose Utilization of Mineral Resources, 2021(1): 72-76+56.

    [10]

    宁可佳, 崔家画, 徐宏祥, 等. 褐煤反浮选试验工艺研究[J]. 矿业科学学报, 2021, 6(2):207-215. NING K J, CUI J H, XU H X, et al. Lignite reverse flotation test process and mechanism[J]. Journal of Mining Science and Technology, 2021, 6(2):207-215. doi: 10.19606/j.cnki.jmst.2021.02.011

    NING K J, CUI J H, XU H X, et al. Lignite reverse flotation test process and mechanism [J]. Journal of Mining Science and Technology, 2021, 6(2): 207-215. doi: 10.19606/j.cnki.jmst.2021.02.011

    [11]

    Temel H A. Removal of gangue minerals containing major elements from karl A+/-ova-Der double dagger ay (bingol) lignite using a reverse flotation method[J]. JOM:the journal of the Minerals, Metals & Materials Society, 2015, 67(12):3002-3009.

    [12]

    Zhang H, Liu J, Cao Y, et al. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride[J]. Powder Technology, 2013, 246:658-663. doi: 10.1016/j.powtec.2013.06.033

    [13]

    郭雅妮, 马畅柠, 惠璠, 等. 风化煤中腐殖酸的提取及其性能表征[J]. 环境工程学报, 2017, 11(5):3153-3160. GUO Y N, MA C N, HUI P, et al. Humic acid extraction from weathered coal and its properties characterization[J]. Chinese Journal of Environmental Engineering, 2017, 11(5):3153-3160. doi: 10.12030/j.cjee.201601216

    GUO Y N, MA C N, HUI P, et al. Humic acid extraction from weathered coal and its properties characterization [J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 3153-3160. doi: 10.12030/j.cjee.201601216

  • 加载中

(4)

(7)

计量
  • 文章访问数:  755
  • PDF下载数:  102
  • 施引文献:  0
出版历程
收稿日期:  2021-04-02
刊出日期:  2023-12-25

目录