-
摘要:
这是一篇矿物加工工程领域的论文。本文通过浮选法对废轮胎热裂解炭黑进行了降灰提纯研究,探究了不同操作因素对炭黑浮选提质的影响规律,并借助形貌和物相表征技术对不同浮选产物的性质进行了分析。结果表明,当矿浆浓度为20 g/L、捕收剂用量为500 g/t、起泡剂用量为1500 g/t、刮泡时间9 min和充气量为0.25 m3/h时,炭黑浮物产率为62.32%,灰分为17.29%,沉物产率为37.68%,灰分为23.32%,石英脱除率为75.49%,碳酸钙脱除率为66.23%,石英、方解石等矿物质得到了有效的去除,其中充气量对实验影响较为显著。研究表明浮选法可对废轮胎热裂解炭黑进行降灰,可作为热裂解炭黑降灰提纯的有效预处理方法。
Abstract:This is an essay in the field of mineral processing engineering. The flotation method is applied to reduce ash content and purify pyrolysis carbon black from waste tires in this study. The effect of different operating factors on carbon black flotation was explored, and the phase and morphology of different flotation products were measured by various characterization methods. Results show that 62.32% yield of clean carbon black and 17.29% ash content for flotation concentrate were obtained, and 37.68% yield of flotation tailing and 23.32% ash content were obtained as well under the optimal flotation conditions were of 20 g/L of concentration, 500 g/t of collector, 1500 g/t of foaming agent, 9 min of froth skimming time and 0.25 m3/h of aeration amount, and the removal rate of quartz is 75.49% and the removal rate of calcium carbonate is 66.23%. Minerals including quartz and calcite were effectively removed by flotation, The amount of aeration had more significant impact on the test. This study indicates that flotation can be well used for reducing ash content of pyrolysis carbon black from waste tires which is proved to be an effective ash reduction pretreatment method.
-
-
表 1 正交实验因素及水平
Table 1. Orthogonal test factors and levels
水平 因素A 因素B 因素C 因素D 因素E 煤油用量
/(g/t)仲辛醇用量
/(g/t)充气量
/(m3/h)矿浆浓度
/(g/L)刮泡时间
/min1 0 0 0.15 10 3 2 500 500 0.20 15 5 3 1000 1000 0.25 20 7 4 1500 1500 0.30 25 9 表 2 正交实验结果
Table 2. Orthogonal test for purification of carbon black
实验号 A B C D E 浮物产率/% 浮物灰分/% 石英脱除率/% 碳酸钙脱除率/% 1 1 1 4 3 2 21.32 18.35 82.10 81.19 2 2 1 1 1 3 34.57 17.72 74.64 68.87 3 3 1 3 4 1 27.46 17.79 80.43 75.54 4 4 1 2 2 4 42.40 17.12 62.79 61.36 5 1 2 3 2 3 48.35 18.36 62.43 55.53 6 2 2 2 4 2 49.68 17.96 61.17 54.22 7 3 2 4 1 4 57.65 18.01 47.71 46.20 8 4 2 1 3 1 44.96 17.57 65.57 58.87 9 1 3 1 4 4 43.43 18.26 66.95 60.36 10 2 3 4 2 1 36.49 17.96 70.69 67.05 11 3 3 2 3 3 67.24 18.23 43.11 36.29 12 4 3 3 1 2 56.08 17.67 70.66 60.67 13 1 4 2 1 1 19.29 17.17 86.68 89.17 14 2 4 3 3 4 58.22 17.52 71.35 64.45 15 3 4 1 2 2 57.27 17.01 82.67 65.34 16 4 4 4 4 3 68.84 18.33 41.32 47.13 K1 72.14 70.97 70.57 70.57 70.48 K2 71.16 71.90 70.47 70.45 70.99 K3 71.04 72.12 71.34 71.66 72.64 K4 70.69 70.02 72.65 72.34 70.91 R 1.10 2.10 2.17 1.90 2.16 表 3 方差分析
Table 3. Analysis of variance
方差来源 偏差平方和 自由度 均方 F比 临界值 因素A 0.35 3 0.12 0.49 F0.01(3,12)=5.95 因素B 0.54 3 0.18 0.76 因素C 0.73 3 0.24 1.02 F0.05(3,12)=3.49 因素D 0.67 3 0.22 0.95 因素E 0.67 3 0.22 0.95 F0.1(3,12)=2.61 误差 2.84 12 0.24 合计 5.79 15 表 4 热裂解炭黑主要杂质含量及其去除率
Table 4. Content and removal rate of Main impurity from pyrolysis carbon black
矿物成分 含量/% 去除率/% 原料 浮物 沉物 硫化锌 9.68 12.48 2.49 9.69 石英 3.86 1.21 7.72 75.49 碳酸钙 2.87 1.23 5.04 66.23 -
[1] 葛瀚文, 董慧欣, 苏冠蓉, 等. 废旧轮胎热裂解残渣资源化利用工艺研究进展[J]. 再生资源与循环经济, 2019, 12(10):24-27. GE H W, DONG H X, SU G R, et al. Research progress on the resource utilisation process of waste tyre thermal cracking residue[J]. Renewable Resources and Circular Economy, 2019, 12(10):24-27.
GE H W, DONG H X, SU G R, et al. Research progress on the resource utilisation process of waste tyre thermal cracking residue[J]. Renewable Resources and Circular Economy, 2019, 12(10): 24-27.
[2] 曹婷雨, 黄烨, 左明波, 等. “黑色污染”及其防治对策探析[J]. 环保科技, 2020, 26(3):61-64. CAO T Y, HUANG Y, ZUO M B, et al. Exploration of "black pollution" and its prevention and countermeasures[J]. Environmental Science and Technology, 2020, 26(3):61-64.
CAO T Y, HUANG Y, ZUO M B, et al. Exploration of "black pollution" and its prevention and countermeasures[J]. Environmental Science and Technology, 2020, 26(3): 61-64.
[3] 蒋智慧, 刘洋, 宋永猛, 等. 废旧轮胎热解及热解产物研究展望[J]. 化工进展, 2021, 40(1):515-525. JIANG Z H, LIU Y, SONG Y M, et al. Pyrolysis of waste tyres and pyrolysis products[J]. Progress of Chemical Industry, 2021, 40(1):515-525.
JIANG Z H, LIU Y, SONG Y M, et al. Pyrolysis of waste tyres and pyrolysis products[J]. Progress of Chemical Industry, 2021, 40(1): 515-525.
[4] Zhang X, Li H, Cao Q, et al. Upgrading pyrolytic residue from waste tires to commercial carbon black[J]. Waste Management & Research, 2018, 36(5):436-444.
[5] 覃刘平, 王黎, 鲁逸飞, 等. 稀土改性NaY型分子筛催化热解废轮胎[J]. 化工环保, 2020, 40(2):203-206. QIN L P, WANG L, LU Y F, et al. Catalytic pyrolysis of waste tyres by rare earth modified NaY-type molecular sieves[J]. Chemical Environmental Protection, 2020, 40(2):203-206.
QIN L P, WANG L, LU Y F, et al. Catalytic pyrolysis of waste tyres by rare earth modified NaY-type molecular sieves[J]. Chemical Environmental Protection, 2020, 40(2): 203-206.
[6] 轩召民, 崔兆民, 王峰. 废旧轮胎热解炭黑应用研究[J]. 山东化工, 2020, 49(20):96-97+99. XUAN Z M, CUI Z M, WANG F. Application research on pyrolysis carbon black from waste tyres[J]. Shandong Chemical Industry, 2020, 49(20):96-97+99.
XUAN Z M, CUI Z M, WANG F. Application research on pyrolysis carbon black from waste tyres[J]. Shandong Chemical Industry, 2020, 49(20): 96-97+99.
[7] Martínez J D, Cardona-Uribe N, Murillo R, et al. Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding[J]. Waste Management, 2019, 85:574-584. doi: 10.1016/j.wasman.2019.01.016
[8] 周园芳, 欧阳少波, 熊道陵, 等. 废轮胎热解炭黑灰渣中锌提取工艺[J]. 有色金属科学与工程, 2020, 11(6):10-17+77. ZHOU Y F, OUYANG S B, XIONG D L, et al. Zinc extraction process from waste tyre pyrolysis carbon black ash[J]. Nonferrous Metal Science and Engineering, 2020, 11(6):10-17+77.
ZHOU Y F, OUYANG S B, XIONG D L, et al. Zinc extraction process from waste tyre pyrolysis carbon black ash[J]. Nonferrous Metal Science and Engineering, 2020, 11(6): 10-17+77.
[9] 沈伯雄, 鲁锋, 朱国营, 等. 废轮胎热解炭黑及其改性后的特性研究[J]. 环境工程学报, 2010, 4(7):1615-1618. SHEN B X, LU F, ZHU G Y, et al. Characteristics of carbon black from waste tyre pyrolysis and its modification[J]. Journal of Environmental Engineering, 2010, 4(7):1615-1618.
SHEN B X, LU F, ZHU G Y, et al. Characteristics of carbon black from waste tyre pyrolysis and its modification[J]. Journal of Environmental Engineering, 2010, 4(7): 1615-1618.
[10] Zhong Ruipeng, Xu Jinjia, Hui David, et al. Pyrolytic preparation and modification of carbon black recovered from waste tyres[J]. Waste Management &Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2020, 38(1).
[11] 翟忠标, 牟兴兵, 刘俊场, 等. 烟煤浮选降灰实验研究[J]. 选煤技术, 2020(5):21-25. ZHAI Z B, MOU X B, LIU J C, et al. Experimental study on ash reduction in bituminous coal flotation[J]. Coal Selection Technology, 2020(5):21-25.
ZHAI Z B, MOU X B, LIU J C, et al. Experimental study on ash reduction in bituminous coal flotation[J]. Coal Selection Technology, 2020(5): 21-25.
[12] 朱一民. 2020 年浮选药剂的进展[J]. 矿产综合利用, 2021(2):102-118. ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118.
ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2): 102-118.
-