Experimental Removal of Chlorine from Hydro-Zinc Smelting System
-
摘要:
这是一篇冶金工程领域的论文。在湿法炼锌系统中,氯离子的大量存在严重制约着生产的正常进行。本文对新型X药剂进行除氯实验研究,采用生产现场中上清为实验除氯对象,探究X药剂加入量、中上清温度、pH值、反应时间以及杂质F−,Mg2+对除氯率的影响。实验结果表明:X药剂加入量为8倍、反应时间为60 min、反应温度为60 ℃、pH值<5.5时,X药剂具有相对较高的除氯率,约为85%;其中杂质离子F−对除氯率无明显影响;当Mg2+浓度超过16 g/L时,X药剂的除氯率略有下降。
Abstract:This is an essay in the field of metallurgical engineering. In the hydro-zinc smelting system, the large amount of chloride ions seriously restricts the normal production. In this essay, a new type of X agent is used for the dechlorination test. Neutral leaching solution was used as the research object to explore the influence of X agent addition, neutral leaching solution temperature, pH value, reaction time, and impurities F− and Mg2+ on the chlorine removal rate. The test results show that when the dosage of X agent is 8 times, the reaction time is 60 min, the reaction temperature is 60 ℃, and the pH value is less than 5.5, X agent has the relatively highest rate of chlorine removal, about 85%; among them, F− no obvious effect on the chlorine removal rate; when the Mg2+ concentration exceeds 16 g/L, the chlorine removal rate of the X agent drops slightly.
-
-
表 1 X药剂加入量对除氯率的影响
Table 1. Effect of the amount of X agent added on the chlorine removal rate
X药剂加入倍数 滤液中Cl−浓度/(mg/L) 除氯率/% 4 258.30 41.23 6 116.16 74.47 8 68.73 84.89 10 65.29 85.65 表 2 不同反应时间对除氯率的影响
Table 2. Effect of different reaction time on the chlorine removal rate
反应时间/min 滤液中Cl−浓度/(mg/L) 除氯率/% 40 206.43 54.63 50 121.71 73.25 60 70.43 84.52 80 74.89 83.28 100 77.85 82.89 表 3 不同pH值对除氯率的影响
Table 3. Effect of different pH value on the chlorine removal rate
pH值 滤液中Cl−浓度/(mg/L) 除氯率/% 3.5 70.25 84.56 4 70.84 84.43 4.5 71.03 84.39 5 69.93 84.63 5.5 76.39 83.21 6 122.17 73.15 6.5 185.50 59.23 表 4 不同温度对除氯率的影响
Table 4. Effect of different temperatures on the chlorine removal rate
温度/℃ 滤液中Cl−浓度/(mg/L) 除氯率/% 40 256.98 43.52 50 147.06 67.68 60 68.61 84.92 70 68.20 85.01 80 69.66 84.69 90 90.95 80.01 表 5 不同Mg2+含量对除氯率的影响
Table 5. Effect of different Mg2+ content on the chlorine removal rate
Mg2+/(g/L) 滤液中Cl−浓度/(mg/L) 除氯率/% 8 68.25 85.00 12 73.39 83.87 16 80.81 82.24 20 92.59 79.65 24 103.47 77.26 表 6 不同F−含量对除氯率的影响
Table 6. Effect of different F− content on the chlorine removal rate
F−/(mg/L) 滤液中Cl−浓度/(mg/L) 除氯率/% 85 81.72 82.04 125 81.40 82.11 165 82.86 81.79 205 82.54 81.86 245 85.49 81.21 285 86.36 81.02 -
[1] 朱军, 李维亮, 刘曼博, 等. 锌湿法冶炼渣的污染物分析及综合利用技术[J]. 矿产综合利用, 2020(4):59-65. ZHU J, LI W L, LIU M B, et al. Pollutant analysis and comprehensive utilization technology of zinchydrometallurgical slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4):59-65. doi: 10.3969/j.issn.1000-6532.2020.04.009
ZHU J, LI W L, LIU M B, et al. Pollutant analysis and comprehensive utilization technology of zinchydrometallurgical slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 59-65. doi: 10.3969/j.issn.1000-6532.2020.04.009
[2] 申亚芳, 张馨圆, 王乐, 等. 氧化锌矿处理方法现状[J]. 矿产综合利用, 2020(2):23-28. SHEN Y F, ZHANG X Y, WANG L, et al. Preparation of zinc and its compounds from zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):23-28. doi: 10.3969/j.issn.1000-6532.2020.02.004
SHEN Y F, ZHANG X Y, WANG L, et al. Preparation of zinc and its compounds from zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 23-28. doi: 10.3969/j.issn.1000-6532.2020.02.004
[3] 杨腾蛟, 孔金换, 张向阳. 湿法炼锌硫酸锌溶液脱除氟氯方法探讨[J]. 有色冶金节能, 2018, 34(1):30-33. YANG T J, KONG J H, ZHANG X Y. Discussion on the method of removing fluorine and chlorine from zinc sulfates olution in zinc refine[J]. Energy Saving of Nonferrous Metallurgy, 2018, 34(1):30-33. doi: 10.3969/j.issn.1008-5122.2018.01.010
YANG T J, KONG J H, ZHANG X Y. Discussion on the method of removing fluorine and chlorine from zinc sulfates olution in zinc refine[J]. Energy Saving of Nonferrous Metallurgy, 2018, 34(1): 30-33. doi: 10.3969/j.issn.1008-5122.2018.01.010
[4] 罗贞, 王铧泰, 解万文, 等. 湿法炼锌过程中铜渣除氯实验研究[J]. 中国有色冶金, 2020, 49(2):17-20. LUO Z, WANG H T, XIE W W, et al. Study on the chlorine removal by copper slag in the zinc hydrometallurgy[J]. China Nonferrous Metallurgy, 2020, 49(2):17-20.
LUO Z, WANG H T, XIE W W, et al. Study on the chlorine removal by copper slag in the zinc hydrometallurgy[J]. China Nonferrous Metallurgy, 2020, 49(2): 17-20.
[5] 王锦鸿. 湿法系统除氯工艺技术研究及应用[J]. 湖南有色金属, 2013, 29(5):37-40. WANG J H. Dechlorination technology research and application in wet system[J]. Hunan Nonferrous Metals, 2013, 29(5):37-40. doi: 10.3969/j.issn.1003-5540.2013.05.012
WANG J H. Dechlorination technology research and application in wet system[J]. Hunan Nonferrous Metals, 2013, 29(5): 37-40. doi: 10.3969/j.issn.1003-5540.2013.05.012
[6] 郑莉莉. 脱氯技术在湿法炼锌流程的研究和应用[J]. 世界有色金属, 2017(16): 23-24.
ZHENG L L. Research and application of dechlorination technology in the process of hydrometallurgical zinc smelting[J]. World Nonferrous Metals, 2017(16): 23-24.
[7] 郭亚丹, 喻文超, 陈锦全, 等. 电催化氧化法处理湿法炼锌污酸废水中的氯[J]. 有色金属(冶炼部分), 2017(12):57-62. GUO Y D, YU W C, CHEN J Q, et al. Treatment of chlorine in sewage acid wastewater from hydro-zinc smelting by electrocatalytic oxidation[J]. Non-ferrous Metals (Extractive Metallurgy), 2017(12):57-62.
GUO Y D, YU W C, CHEN J Q, et al. Treatment of chlorine in sewage acid wastewater from hydro-zinc smelting by electrocatalytic oxidation[J]. Non-ferrous Metals (Extractive Metallurgy), 2017(12): 57- 62.
-