Analysis of Mineral Gene Characteristics in Iron Separation Process of Heishan Iron Mine
-
摘要:
这是一篇矿业工程领域的论文。黑山铁矿主要矿物为钒钛磁铁矿、钛磁铁矿,因受制于矿石性质的影响,该类型矿床铁精矿品位普遍偏低,且富含钛、硅、镁等元素,限制了该类矿床资源的开发效益,若能在选矿过程中进一步提高铁精矿品位,将有助于提高矿山效益、降低铁精矿的冶炼成本。本文采用光学显微镜、矿物解离分析仪(MLA)、化学分析等方法,对该类型铁矿石进行了系统地研究。通过对样品中矿物组成、成分分析以及杂质矿物的种类、粒度、解离特征等方面的研究,查明了影响该类型铁精矿品质的矿物学因素。
Abstract:This is an essay in the field of mining engineering. The main minerals of Heishan iron mine are vanadium titanomagnetite and titanomagnetite. Due to the influence of ore properties, the grade of iron concentrate in this type of deposit is generally low and rich in titanium, silicon, magnesium and other elements, which limits the development benefits of this kind of deposit resources. If the grade of iron concentrate can be further improved in the beneficiation process, it will help to improve the mine benefits and reduce the smelting cost of iron concentrate. This paper systematically studies this type of iron ore by means of optical microscope, mineral dissociation analyzer (MLA) and chemical analysis. This type of iron ore was systematically studied by means of optical microscope, mineral dissociation analyzer (MLA) and chemical analysis.
-
Key words:
- Mining engineering /
- Titanomagnetite /
- Mineral composition /
- Component analysis /
- Mineralogical factors
-
-
表 1 原矿光谱分析结果/%
Table 1. Spectrum analysis results of raw ore
Fe SiO2 CaO Al2O3 TiO2 MgO P2O5 Cr2O3 S Ni Mn K2O Na2O Co Zn 25.35 24.67 11.9 9.2 8.87 6.91 3.86 1.14 0.42 0.35 0.31 0.26 0.08 0.06 0.02 表 2 矿样铁物相分析
Table 2. Iron phase analysis of ore sample
名称 磁性铁矿物中铁 赤褐铁矿中铁 碳酸铁矿物中铁 硅酸铁矿物中铁 硫化铁矿物中铁 全铁 含量/% 18.02 1.38 0.35 5.24 0.36 25.35 分布率/% 71.08 5.44 1.38 20.67 1.42 100.00 表 3 矿物粒度分析结果
Table 3. Analysis results of mineral particle size
名称 +0.075 mm -0.075+0.053 mm -0.053+0.037 mm -0.037 mm 磁铁矿 含量/% 5.65 8.12 21.87 64.36 累计
含量/%5.65 13.77 35.64 100.00 钛磁
铁矿含量/% 6.28 4.14 21.64 67.94 累计
含量/%6.28 10.42 32.06 100.00 表 4 矿物组成和相对含量/%
Table 4. Mineral composition and relative content
磁铁矿 钛磁铁矿 赤铁矿 钛赤铁矿 褐铁矿 黄铁矿 非金属矿物 合计 72.62 17.60 3.50 0.84 0.03 微量 5.41 100.00 表 5 磁铁矿、钛磁铁矿粒度统计
Table 5. Particle size statistics of magnetite and titanomagnetite
名称 +0.075
mm-0.075+0.053
mm-0.053+0.037
mm-0.037
mm磁铁矿 含量/% 5.65 8.12 21.64 67.94 累计
含量/%5.65 13.77 35.64 100.00 钛磁
铁矿含量/% 6.28 4.14 21.64 67.94 累计
含量/%6.28 10.42 32.06 100.00 表 6 磁铁矿和钛磁铁矿解离情况考查结果
Table 6. Test results of the dissociation of magnetite and titanomagnetite
磁铁矿
嵌布关系含量/% 钛磁铁矿
嵌布关系含量/% 磁铁矿 95.25 钛磁铁矿 90.45 磁铁矿-非金属矿物 1.15 钛磁铁矿-非金属矿物 6.05 磁铁矿-钛磁铁矿 3.15 钛磁铁矿-磁铁矿 2.75 磁铁矿-赤铁矿 0.15 钛磁铁矿-磁铁矿-
非金属矿物0.75 磁铁矿-钛磁铁矿-
非金属矿物0.30 合计 100.00 合计 100.00 -
[1] 肖仪武. 钒钛磁铁矿矿石基因特性及其对选铁的影响[J]. 矿产综合利用, 2021(5):198-201. XIAO Y W. Ore genetic characteristics of vanadium-titanium magnetite and its influence for mineral processing[J]. Multipurpose Utilization of Mineral Resources, 2021(5):198-201. doi: 10.3969/j.issn.1000-6532.2021.05.033
XIAO Y W. Ore genetic characteristics of vanadium-titanium magnetite and its influence for mineral processing[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 198-201. doi: 10.3969/j.issn.1000-6532.2021.05.033
[2] 孙传尧, 周俊武, 贾木欣, 等. 基因矿物加工工程研究[J]. 有色金属(选矿部分), 2018(1):1-7. SUN C Y, ZHOU J W, JIA M X, et al. Research ongenetic mineral processing engineering[J]. Non-ferrous Metals(Mineral Processing Section), 2018(1):1-7.
SUN C Y, ZHOU J W, JIA M X, et al. Research ongenetic mineral processing engineering[J]. Non-ferrous Metals(Mineral Processing Section), 2018(1): 1-7.
[3] 薛忠言, 曾令熙, 刘应冬. 太和钒钛磁铁矿中硫化物的工艺矿物学研究[J]. 矿产综合利用, 2019(3):78-81. XUE Z Y, ZENG L X, LIU Y D. Process mineralogy of the sulfide in the taihe vanadium titanomagnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):78-81. doi: 10.3969/j.issn.1000-6532.2019.03.018
XUE Z Y, ZENG L X, LIU Y D. Process mineralogy of the sulfide in the taihe vanadium titanomagnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 78-81. doi: 10.3969/j.issn.1000-6532.2019.03.018
[4] 李磊, 金建文, 肖仪武, 等. 影响攀西某磁铁矿精矿品质的矿物学因素分析[J]. 矿产综合利用, 2021(4):193-196. LI L, JIN J W, XIAO Y W, et al. Researches of mineralogical factors affecting the quality of a magnetite concentrate in panxi area[J]. Multipurpose Utilization of Mineral Resources, 2021(4):193-196. doi: 10.3969/j.issn.1000-6532.2021.04.031
LI L, JIN J W, XIAO Y W, et al. Researches of mineralogical factors affecting the quality of a magnetite concentrate in panxi area [J]. Multipurpose Utilization of Mineral Resources, 2021(4): 193-196. doi: 10.3969/j.issn.1000-6532.2021.04.031
[5] 洪秋阳, 李美荣, 李波,等. 国外某难选冶钒钛铁矿石工艺矿物学特征 [J]. 矿产综合利用, 2020(6): 48-55.
HONG Q Y, LI M R, LI B, et al. Process mineralogical characteristics of a foreign refractory vanadium-titanium iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 48-55.
[6] 陈福林, 杨晓军, 蔡先炎, 等. 攀西地区白马辉长岩型超低品位钒钛磁铁矿选铁实验研究[J]. 矿产综合利用, 2020(6):26-30. CHEN F L, YANG X J, CAI X Y, et al. Experimental study on iron separation of baima gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi Area[J]. Multipurpose Utilization of Mineral Resources, 2020(6):26-30. doi: 10.3969/j.issn.1000-6532.2020.06.005
CHEN F L, YANG X J, CAI X Y, et al. Experimental study on iron separation of baima gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi Area[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 26-30. doi: 10.3969/j.issn.1000-6532.2020.06.005
[7] 惠博, 杨耀辉. 攀西红格矿区橄辉岩型钒钛磁铁矿矿石性质研究及对选矿工艺的影响[J]. 矿产综合利用, 2020(4):126-129. HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021
HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021
[8] 杨耀辉, 惠博, 严伟平, 等. 攀西微细粒钛铁矿工艺矿物学研究[J]. 矿产综合利用, 2020(3):131-135. YANG Y H, HUI B, YAN W P, et al. Research on process mineralogy of fine ilmenite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(3):131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022
YANG Y H, HUI B, YAN W P, et al. Research on process mineralogy of fine ilmenite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022
[9] 陈超, 张裕书, 李潇雨, 等. 钛磁铁矿选矿技术研究进展[J]. 矿产综合利用, 2021(3):99-105. CHEN C, ZHANG Y S, LI X Y, et al. Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3):99-105.
CHEN C, ZHANG Y S, LI X Y, et al. Research progress in titanium-magnetite beneficiation technology [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 99-105.
[10] 肖颖, 管川, 徐晓霞. 钒钛磁铁矿铁钛物相联测分析方法[J]. 矿产综合利用, 2019(4):98-102. XIAO Y, GUAN C, XU X X. Determination method of iron and titanium phases for vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(4):98-102. doi: 10.3969/j.issn.1000-6532.2019.04.022
XIAO Y, GUAN C, XU X X. Determination method of iron and titanium phases for vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 98-102. doi: 10.3969/j.issn.1000-6532.2019.04.022
-