黑山铁矿选铁工艺中的矿物基因特性分析

李金龙, 李明彦, 赵礼兵, 王鑫瑀, 曹鹏飞, 张迪. 黑山铁矿选铁工艺中的矿物基因特性分析[J]. 矿产综合利用, 2023, 44(6): 197-201. doi: 10.3969/j.issn.1000-6532.2023.06.030
引用本文: 李金龙, 李明彦, 赵礼兵, 王鑫瑀, 曹鹏飞, 张迪. 黑山铁矿选铁工艺中的矿物基因特性分析[J]. 矿产综合利用, 2023, 44(6): 197-201. doi: 10.3969/j.issn.1000-6532.2023.06.030
Li Jinlong, Li Mingyan, Zhao Libing, Wang Xinyu, Cao Pengfei, Zhang Di. Analysis of Mineral Gene Characteristics in Iron Separation Process of Heishan Iron Mine[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 197-201. doi: 10.3969/j.issn.1000-6532.2023.06.030
Citation: Li Jinlong, Li Mingyan, Zhao Libing, Wang Xinyu, Cao Pengfei, Zhang Di. Analysis of Mineral Gene Characteristics in Iron Separation Process of Heishan Iron Mine[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 197-201. doi: 10.3969/j.issn.1000-6532.2023.06.030

黑山铁矿选铁工艺中的矿物基因特性分析

  • 基金项目: 河北省自然科学基金项目(E2013209320)
详细信息
    作者简介: 李金龙(1984-),男,高级工程师,研究方向为工艺矿物学
    通讯作者: 李明彦(1979-), 男,高级工程师,研究方向为采矿工程
  • 中图分类号: TD91

Analysis of Mineral Gene Characteristics in Iron Separation Process of Heishan Iron Mine

More Information
  • 这是一篇矿业工程领域的论文。黑山铁矿主要矿物为钒钛磁铁矿、钛磁铁矿,因受制于矿石性质的影响,该类型矿床铁精矿品位普遍偏低,且富含钛、硅、镁等元素,限制了该类矿床资源的开发效益,若能在选矿过程中进一步提高铁精矿品位,将有助于提高矿山效益、降低铁精矿的冶炼成本。本文采用光学显微镜、矿物解离分析仪(MLA)、化学分析等方法,对该类型铁矿石进行了系统地研究。通过对样品中矿物组成、成分分析以及杂质矿物的种类、粒度、解离特征等方面的研究,查明了影响该类型铁精矿品质的矿物学因素。

  • 加载中
  • 图 1  磨矿时间和精矿全铁品位关系

    Figure 1. 

    图 2  磨矿时间和精矿TiO2品位关系

    Figure 2. 

    图 3  粗磨精矿元素面扫

    Figure 3. 

    图 4  再磨时间和精矿全铁品位关系

    Figure 4. 

    图 5  再磨时间和磁选TiO2产品指标关系

    Figure 5. 

    图 6  再磨铁精矿元素面扫

    Figure 6. 

    表 1  原矿光谱分析结果/%

    Table 1.  Spectrum analysis results of raw ore

    FeSiO2CaOAl2O3TiO2MgOP2O5Cr2O3SNiMnK2ONa2OCoZn
    25.3524.6711.99.28.876.913.861.140.420.350.310.260.080.060.02
    下载: 导出CSV

    表 2  矿样铁物相分析

    Table 2.  Iron phase analysis of ore sample

    名称磁性铁矿物中铁赤褐铁矿中铁碳酸铁矿物中铁硅酸铁矿物中铁硫化铁矿物中铁全铁
    含量/%18.021.380.355.240.3625.35
    分布率/%71.085.441.3820.671.42100.00
    下载: 导出CSV

    表 3  矿物粒度分析结果

    Table 3.  Analysis results of mineral particle size

    名称+0.075 mm-0.075+0.053 mm-0.053+0.037 mm-0.037 mm
    磁铁矿含量/%5.658.1221.8764.36
    累计
    含量/%
    5.6513.7735.64100.00
    钛磁
    铁矿
    含量/%6.284.1421.6467.94
    累计
    含量/%
    6.2810.4232.06100.00
    下载: 导出CSV

    表 4  矿物组成和相对含量/%

    Table 4.  Mineral composition and relative content

    磁铁矿钛磁铁矿赤铁矿钛赤铁矿褐铁矿黄铁矿非金属矿物合计
    72.6217.603.500.840.03微量5.41100.00
    下载: 导出CSV

    表 5  磁铁矿、钛磁铁矿粒度统计

    Table 5.  Particle size statistics of magnetite and titanomagnetite

    名称+0.075
    mm
    -0.075+0.053
    mm
    -0.053+0.037
    mm
    -0.037
    mm
    磁铁矿含量/%5.658.1221.6467.94
    累计
    含量/%
    5.6513.7735.64100.00
    钛磁
    铁矿
    含量/%6.284.1421.6467.94
    累计
    含量/%
    6.2810.4232.06100.00
    下载: 导出CSV

    表 6  磁铁矿和钛磁铁矿解离情况考查结果

    Table 6.  Test results of the dissociation of magnetite and titanomagnetite

    磁铁矿
    嵌布关系
    含量/%钛磁铁矿
    嵌布关系
    含量/%
    磁铁矿95.25钛磁铁矿90.45
    磁铁矿-非金属矿物1.15钛磁铁矿-非金属矿物6.05
    磁铁矿-钛磁铁矿3.15钛磁铁矿-磁铁矿2.75
    磁铁矿-赤铁矿0.15钛磁铁矿-磁铁矿-
    非金属矿物
    0.75
    磁铁矿-钛磁铁矿-
    非金属矿物
    0.30
    合计100.00合计100.00
    下载: 导出CSV
  • [1]

    肖仪武. 钒钛磁铁矿矿石基因特性及其对选铁的影响[J]. 矿产综合利用, 2021(5):198-201. XIAO Y W. Ore genetic characteristics of vanadium-titanium magnetite and its influence for mineral processing[J]. Multipurpose Utilization of Mineral Resources, 2021(5):198-201. doi: 10.3969/j.issn.1000-6532.2021.05.033

    XIAO Y W. Ore genetic characteristics of vanadium-titanium magnetite and its influence for mineral processing[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 198-201. doi: 10.3969/j.issn.1000-6532.2021.05.033

    [2]

    孙传尧, 周俊武, 贾木欣, 等. 基因矿物加工工程研究[J]. 有色金属(选矿部分), 2018(1):1-7. SUN C Y, ZHOU J W, JIA M X, et al. Research ongenetic mineral processing engineering[J]. Non-ferrous Metals(Mineral Processing Section), 2018(1):1-7.

    SUN C Y, ZHOU J W, JIA M X, et al. Research ongenetic mineral processing engineering[J]. Non-ferrous Metals(Mineral Processing Section), 2018(1): 1-7.

    [3]

    薛忠言, 曾令熙, 刘应冬. 太和钒钛磁铁矿中硫化物的工艺矿物学研究[J]. 矿产综合利用, 2019(3):78-81. XUE Z Y, ZENG L X, LIU Y D. Process mineralogy of the sulfide in the taihe vanadium titanomagnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):78-81. doi: 10.3969/j.issn.1000-6532.2019.03.018

    XUE Z Y, ZENG L X, LIU Y D. Process mineralogy of the sulfide in the taihe vanadium titanomagnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 78-81. doi: 10.3969/j.issn.1000-6532.2019.03.018

    [4]

    李磊, 金建文, 肖仪武, 等. 影响攀西某磁铁矿精矿品质的矿物学因素分析[J]. 矿产综合利用, 2021(4):193-196. LI L, JIN J W, XIAO Y W, et al. Researches of mineralogical factors affecting the quality of a magnetite concentrate in panxi area[J]. Multipurpose Utilization of Mineral Resources, 2021(4):193-196. doi: 10.3969/j.issn.1000-6532.2021.04.031

    LI L, JIN J W, XIAO Y W, et al. Researches of mineralogical factors affecting the quality of a magnetite concentrate in panxi area [J]. Multipurpose Utilization of Mineral Resources, 2021(4): 193-196. doi: 10.3969/j.issn.1000-6532.2021.04.031

    [5]

    洪秋阳, 李美荣, 李波,等. 国外某难选冶钒钛铁矿石工艺矿物学特征 [J]. 矿产综合利用, 2020(6): 48-55.

    HONG Q Y, LI M R, LI B, et al. Process mineralogical characteristics of a foreign refractory vanadium-titanium iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 48-55.

    [6]

    陈福林, 杨晓军, 蔡先炎, 等. 攀西地区白马辉长岩型超低品位钒钛磁铁矿选铁实验研究[J]. 矿产综合利用, 2020(6):26-30. CHEN F L, YANG X J, CAI X Y, et al. Experimental study on iron separation of baima gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi Area[J]. Multipurpose Utilization of Mineral Resources, 2020(6):26-30. doi: 10.3969/j.issn.1000-6532.2020.06.005

    CHEN F L, YANG X J, CAI X Y, et al. Experimental study on iron separation of baima gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi Area[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 26-30. doi: 10.3969/j.issn.1000-6532.2020.06.005

    [7]

    惠博, 杨耀辉. 攀西红格矿区橄辉岩型钒钛磁铁矿矿石性质研究及对选矿工艺的影响[J]. 矿产综合利用, 2020(4):126-129. HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021

    HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021

    [8]

    杨耀辉, 惠博, 严伟平, 等. 攀西微细粒钛铁矿工艺矿物学研究[J]. 矿产综合利用, 2020(3):131-135. YANG Y H, HUI B, YAN W P, et al. Research on process mineralogy of fine ilmenite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(3):131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022

    YANG Y H, HUI B, YAN W P, et al. Research on process mineralogy of fine ilmenite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022

    [9]

    陈超, 张裕书, 李潇雨, 等. 钛磁铁矿选矿技术研究进展[J]. 矿产综合利用, 2021(3):99-105. CHEN C, ZHANG Y S, LI X Y, et al. Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3):99-105.

    CHEN C, ZHANG Y S, LI X Y, et al. Research progress in titanium-magnetite beneficiation technology [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 99-105.

    [10]

    肖颖, 管川, 徐晓霞. 钒钛磁铁矿铁钛物相联测分析方法[J]. 矿产综合利用, 2019(4):98-102. XIAO Y, GUAN C, XU X X. Determination method of iron and titanium phases for vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(4):98-102. doi: 10.3969/j.issn.1000-6532.2019.04.022

    XIAO Y, GUAN C, XU X X. Determination method of iron and titanium phases for vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 98-102. doi: 10.3969/j.issn.1000-6532.2019.04.022

  • 加载中

(6)

(6)

计量
  • 文章访问数:  587
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2022-03-03
刊出日期:  2023-12-25

目录