不同掺量铁尾矿对3D打印混凝土胶凝材料性能的影响

张彬, 秦毅. 不同掺量铁尾矿对3D打印混凝土胶凝材料性能的影响[J]. 矿产综合利用, 2024, 45(2): 46-51, 58. doi: 10.3969/j.issn.1000-6532.2024.02.008
引用本文: 张彬, 秦毅. 不同掺量铁尾矿对3D打印混凝土胶凝材料性能的影响[J]. 矿产综合利用, 2024, 45(2): 46-51, 58. doi: 10.3969/j.issn.1000-6532.2024.02.008
ZHANG Bin, QIN Yi. Effect of Iron Tailings with Different Content on the Properties of 3D Printing Concrete Cementitious Materials[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 46-51, 58. doi: 10.3969/j.issn.1000-6532.2024.02.008
Citation: ZHANG Bin, QIN Yi. Effect of Iron Tailings with Different Content on the Properties of 3D Printing Concrete Cementitious Materials[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 46-51, 58. doi: 10.3969/j.issn.1000-6532.2024.02.008

不同掺量铁尾矿对3D打印混凝土胶凝材料性能的影响

详细信息
    作者简介: 张彬(1979-),男,硕士,副教授,研究方向为道路建筑材料
  • 中图分类号: TD982

Effect of Iron Tailings with Different Content on the Properties of 3D Printing Concrete Cementitious Materials

  • 这是一篇陶瓷及复合材料领域的论文。本文研究了掺铁尾矿3D打印胶凝材料的力学性能、流变性和微观结构性能,结果表明:尾矿的粒径较小,可以作为3D打印材料的骨料,在3D打印过程中可以顺利通过输送胶凝材料的管道。随着铁尾矿掺量的不断增大,3D打印胶凝材料的剪切黏度的变化规律呈现出先减小后稳定的趋势,剪切应力的变化规律却呈现出不断增大的趋势,随着层间间隔时间不断增大,3D打印胶凝材料的抗压强度和抗折强度均呈现下降的变化趋势,但是在层间间隔时间在20~30 min之间时,抗压强度和抗折强度下降幅度较为平缓;随着层间间隔时间不断增大,3D打印胶凝材料的层间粘结强度均呈现下降的变化趋势。铁尾矿掺量为30%的3D打印胶凝材料在水化90 d后,经过XRD衍射实验得到胶凝材料的物质成分主要有石英、钙矾石、方解石、钠长石、钙钛矿、Ca2SiO4和水化硅酸钙等七种物质。

  • 加载中
  • 图 1  铁尾矿的XRD

    Figure 1. 

    图 2  铁尾矿粒度分布曲线

    Figure 2. 

    图 3  3D打印胶凝材料凝结时间和流动度变化规律

    Figure 3. 

    图 4  3D打印胶凝材料的抗压强度和抗折强度变化规律的曲线

    Figure 4. 

    图 5  层间时间间隔对抗压强度、抗折强度和层间粘结强度的影响

    Figure 5. 

    图 6  3D打印胶凝材料的剪切应力和剪切黏度的变化规律

    Figure 6. 

    图 7  3D打印胶凝材料的FTIR

    Figure 7. 

    图 8  3D打印胶凝材料的XRD

    Figure 8. 

    表 1  铁尾矿的化学成分/%

    Table 1.  Chemical composition of iron tailings

    SiO2Al2O3CaOFe2O3MgOK2OTiO2Na2O其他氧化物
    51.2515.2312.3610.584.982.740.710.681.47
    下载: 导出CSV
  • [1]

    曾兴华, 黄高明, 吴炎平, 等. 铜尾矿硅质原料在蒸压加气混凝土砌块中应用技术研究[J]. 新型建筑材料, 2021, 48(5):146-148.ZENG X H, HUANG G M, WU Y P, et al. Research on application technology of copper tailings siliceous materials in autoclaved aerated concrete blocks[J]. New Building Materials, 2021, 48(5):146-148.

    ZENG X H, HUANG G M, WU Y P, et al. Research on application technology of copper tailings siliceous materials in autoclaved aerated concrete blocks[J]. New Building Materials, 2021, 48(5):146-148.

    [2]

    刘竞怡, 孙志华, 温久然, 等. 金尾矿砂作为混凝土集料的物化性质及其改性实验[J]. 金属矿山, 2021(5):211-220.LIU J Y, SUN Z H, WEN J R, et al. The physical and chemical properties of gold tailings as concrete aggregate and its modification test[J]. Metal Mine, 2021(5):211-220.

    LIU J Y, SUN Z H, WEN J R, et al. The physical and chemical properties of gold tailings as concrete aggregate and its modification test[J]. Metal Mine, 2021(5):211-220.

    [3]

    宁波, 闫艳, 左夏伟, 等. 铁尾矿砂混凝土力学特性实验研究[J]. 矿产综合利用, 2021(4):159-164.NING B, YAN Y, ZUO X W, et al. Experimental study on mechanical properties of iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4):159-164.

    NING B, YAN Y, ZUO X W, et al. Experimental study on mechanical properties of iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4):159-164.

    [4]

    孙强强, 李兆, 韩茜, 等. 低硅铁尾矿微晶泡沫玻璃的耐酸碱性研究[J]. 矿产综合利用, 2021(6):40-46.SUN Q Q, LI Z, HAN Q, et al. Research on acid and alkali resistance of foam glass-ceramics from low-silicon iron ore tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(6):40-46.

    SUN Q Q, LI Z, HAN Q, et al. Research on acid and alkali resistance of foam glass-ceramics from low-silicon iron ore tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(6):40-46.

    [5]

    冯卡, 王馨语. 硫铁矿尾矿矿渣改良混凝土力学性质与耐久性[J]. 矿产综合利用, 2022(3):6-11.FENG K, WANG X Y. Research on mechanical properties and durability of concrete improved by pyrite tailings and slag[J]. Multipurpose Utilization of Mineral Resources, 2022(3):6-11.

    FENG K, WANG X Y. Research on mechanical properties and durability of concrete improved by pyrite tailings and slag[J]. Multipurpose Utilization of Mineral Resources, 2022(3):6-11.

    [6]

    尤帆, 耿向. 筛分法和激光粒度法联合测定陆源碎屑岩粒度[J]. 计量学报, 2021, 42(3):380-387.YOU F, GENG X. Combination of sieving method and laser particle size method to determine the grain size of terrigenous clastic rocks[J]. Acta Metrology, 2021, 42(3):380-387.

    YOU F, GENG X. Combination of sieving method and laser particle size method to determine the grain size of terrigenous clastic rocks[J]. Acta Metrology, 2021, 42(3):380-387.

    [7]

    杨钱荣, 赵宗志, 肖建庄, 等. 矿物掺合料与化学外加剂对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(2):412-418.YANG Q R, ZAO Z Z, XIAO J Z, et al. The influence of mineral admixtures and chemical admixtures on the properties of 3D printing mortar[J]. Journal of Building Materials, 2021, 24(2):412-418.

    YANG Q R, ZAO Z Z, XIAO J Z, et al. The influence of mineral admixtures and chemical admixtures on the properties of 3D printing mortar[J]. Journal of Building Materials, 2021, 24(2):412-418.

    [8]

    施佳楠, 雷文. 打印温度对3D打印用黄芪药渣/聚乳酸材料性能的影响[J]. 塑料工业, 2021, 49(3):69-73.SHI J N, LEI W. The effect of printing temperature on the properties of Astragalus medicinal residue/polylactic acid material for 3D printing[J]. Plastic Industry, 2021, 49(3):69-73.

    SHI J N, LEI W. The effect of printing temperature on the properties of Astragalus medicinal residue/polylactic acid material for 3D printing[J]. Plastic Industry, 2021, 49(3):69-73.

    [9]

    田小永, 闫万权, 黄兰, 等. 石墨烯/柔性聚乳酸自传感复合材料结构3D打印与性能研究[J]. 机械工程学报, 2021, 57(7):215-223.TIAN X Y, YAN W Q, HUANG L, et al. 3D printing and properties of graphene/flexible polylactic acid self-sensing composite structure[J]. Chinese Journal of Mechanical Engineering, 2021, 57(7):215-223. doi: 10.3901/JME.2021.07.215

    TIAN X Y, YAN W Q, HUANG L, et al. 3D printing and properties of graphene/flexible polylactic acid self-sensing composite structure[J]. Chinese Journal of Mechanical Engineering, 2021, 57(7):215-223. doi: 10.3901/JME.2021.07.215

    [10]

    武雷, 孙远, 杨威, 等. 3D打印混凝土层间黏结强度增强技术及实验研究[J]. 混凝土与水泥制品, 2020(7):1-6.WU L, SUN Y, YANG W, et al. 3D printing concrete interlayer bonding strength enhancement technology and experimental research[J]. Concrete and Cement Products, 2020(7):1-6.

    WU L, SUN Y, YANG W, et al. 3D printing concrete interlayer bonding strength enhancement technology and experimental research[J]. Concrete and Cement Products, 2020(7):1-6.

    [11]

    吴昊一, 蒋亚清, 潘亭宏, 等. 3D打印水泥基材料层间结合性能研究[J]. 新型建筑材料, 2019, 46(12):5-8.WU H Y, JIANG Y Q, PAN T H, et al. Research on the interlayer bonding performance of 3D printing cement-based materials[J]. New Building Materials, 2019, 46(12):5-8.

    WU H Y, JIANG Y Q, PAN T H, et al. Research on the interlayer bonding performance of 3D printing cement-based materials[J]. New Building Materials, 2019, 46(12):5-8.

    [12]

    陆文君, 孙君, 石世宏. 聚乳酸基木塑3D打印材料性能研究[J]. 合成技术及应用, 2018, 33(3):10-12.LU W J, SUN J, SHI S H. Study on properties of polylactic acid-based wood-plastic 3D printing materials[J]. Synthesis Technology and Application, 2018, 33(3):10-12.

    LU W J, SUN J, SHI S H. Study on properties of polylactic acid-based wood-plastic 3D printing materials[J]. Synthesis Technology and Application, 2018, 33(3):10-12.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  563
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2022-06-30
刊出日期:  2024-04-25

目录