西藏某氧化铜铅锌矿混合浮选工艺

王黎明, 吴华. 西藏某氧化铜铅锌矿混合浮选工艺[J]. 矿产综合利用, 2024, 45(3): 193-199. doi: 10.3969/j.issn.1000-6532.2024.03.030
引用本文: 王黎明, 吴华. 西藏某氧化铜铅锌矿混合浮选工艺[J]. 矿产综合利用, 2024, 45(3): 193-199. doi: 10.3969/j.issn.1000-6532.2024.03.030
WANG Liming, WU Hua. Mixed Flotation Process of a Copper Oxide Lead-zinc Ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 193-199. doi: 10.3969/j.issn.1000-6532.2024.03.030
Citation: WANG Liming, WU Hua. Mixed Flotation Process of a Copper Oxide Lead-zinc Ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 193-199. doi: 10.3969/j.issn.1000-6532.2024.03.030

西藏某氧化铜铅锌矿混合浮选工艺

  • 基金项目: 藏财预指【2022】1号中央支持地方部区合建/一流学科珠峰学科建设计划项目-地质资源与地质工程特色学科建设
详细信息
    作者简介: 王黎明(1993-),男,硕士研究生。研究方向为有色金属选矿
    通讯作者: 吴华(1978-),男,博士,正高级工程师,博士生导师,研究方向为遥感地质
  • 中图分类号: TD952

Mixed Flotation Process of a Copper Oxide Lead-zinc Ore in Xizang

More Information
    Corresponding author: WU Hua
  • 这是一篇矿物加工工程领域的论文。西藏某高海拔矿区铜多金属矿氧化率较高,矿石性质复杂,为充分、高效、综合利用矿产资源,本文结合理论和实践经验,通过对矿石的原矿矿物性质和特征进行分析研究,最终确定了以JM-1硫化剂、ZJ-1捕收剂、铜铅锌“先硫后氧”混合浮选为关键技术的浮选工艺。在原矿铜氧化率为38.58%的条件下,实验经两次粗选、三次精选、两次扫选工艺流程,取得混合精矿铅+锌品位之和为41.17%,铜铅锌金属回收率分别为58.74%、80.71%、70.82%的良好指标,极大提高了选矿的利用效果和技术水平,也为后期在选矿技术方法方面的改进和创新提供了技术支撑和有利依据。

  • 加载中
  • 图 1  实验流程

    Figure 1. 

    图 2  浮选工艺对比试验—“氧硫混选”流程

    Figure 2. 

    图 3  浮选工艺对比试验—“先硫后氧”流程

    Figure 3. 

    图 4  “先硫后氧”混合浮选试验流程

    Figure 4. 

    图 5  闭路浮选实验流程

    Figure 5. 

    表 1  矿样主要金属元素化学分析结果/%

    Table 1.  Chemical analysis results of main metallic elements

    CuPbZnAu*Ag*
    1.272.251.140.2857.80
    *单位为g/t
    下载: 导出CSV

    表 2  石灰、碳酸钠不同比例用量实验结果

    Table 2.  Test results of different proportions of lime and sodium carbonate

    石灰:碳酸钠/(g/t)
    pH值
    名称 产率/% 品位/% 回收率/%
    Cu Pb Zn Cu Pb Zn
    2500:0
    pH值=7~8
    精矿 17.63 4.19 10.08 4.39 58.63 78.32 68.51
    尾矿 82.37 0.63 0.60 0.43 41.37 21.68 31.49
    原矿 100.00 1.26 2.27 1.13 100.00 100.00 100.00
    1500:500
    pH值=7~8
    精矿 15.32 4.89 12.00 5.11 60.47 81.35 68.73
    尾矿 84.68 0.58 0.50 0.42 39.53 18.65 31.27
    原矿 100.00 1.24 2.26 1.14 100.00 100.00 100.00
    1000:1000
    pH值=7~8
    精矿 14.63 5.28 12.65 5.47 61.75 82.64 68.97
    尾矿 85.37 0.56 0.46 0.42 38.25 17.36 31.03
    原矿 100.00 1.25 2.24 1.16 100.00 100.00 100.00
    0:2500
    pH值=7~8
    精矿 12.63 5.85 14.70 6.23 60.08 82.53 68.42
    尾矿 87.37 0.56 0.45 0.42 39.92 17.47 31.58
    原矿 100.00 1.23 2.25 1.15 100.00 100.00 100.00
    下载: 导出CSV

    表 3  硫化剂对比实验结果

    Table 3.  Comparison test results of curing agent

    硫化剂/(g/t)产品名称产率/%品位/%回收率/%
    CuPbZnCuPbZn
    硫化钠:800精矿17.934.089.964.4359.0379.0269.11
    尾矿82.070.620.580.4340.9720.9830.89
    原矿100.001.242.261.15100.00100.00100.00
    JM-1:400精矿16.234.8111.364.8362.4781.9568.83
    尾矿83.770.560.480.4237.5318.0531.17
    原矿100.001.252.251.14100.00100.00100.00
    下载: 导出CSV

    表 4  JM-1用量实验结果

    Table 4.  JM-1 dosage test results

    JM-1用量/(g/t)产品名称产率/%品位/%回收率/%
    CuPbZnCuPbZn
    200精矿14.935.0311.885.2060.1378.5167.45
    尾矿85.070.590.570.4439.8721.4932.55
    原矿100.001.252.261.15100.00100.00100.00
    400精矿16.234.8111.364.8362.4781.9568.83
    尾矿83.770.560.480.4237.5318.0531.17
    原矿100.001.252.251.14100.00100.00100.00
    600精矿17.234.5510.674.6862.7582.0468.97
    尾矿82.770.560.490.4437.2517.9631.03
    原矿100.001.252.241.17100.00100.00100.00
    800精矿17.334.4810.664.5663.0882.1368.68
    尾矿82.670.550.490.4436.9217.8731.32
    原矿100.001.232.251.15100.00100.00100.00
    下载: 导出CSV

    表 5  捕收剂对比实验结果

    Table 5.  Comparison test results of collectors

    捕收剂种类及用量
    /(g/t)
    产品名称产率/%品位/%回收率/%
    CuPbZnCuPbZn
    丁基黄药+丁铵黑药(120+60)精矿16.234.8111.364.8362.4781.9568.83
    尾矿83.770.560.480.4237.5318.0531.17
    原矿100.001.252.251.14100.00100.00100.00
    ZJ-1:120精矿13.935.6613.395.7263.1382.5669.29
    尾矿86.070.540.460.4136.8717.4430.71
    原矿100.001.252.261.15100.00100.00100.00
    下载: 导出CSV

    表 6  ZJ-1用量实验结果

    Table 6.  ZJ-1 dosage test results

    ZJ-1用量/(g/t)产品名称产率/%品位/%回收率/%
    CuPbZnCuPbZn
    80精矿11.936.5115.606.6361.1381.6569.39
    尾矿88.070.560.480.4038.8718.3530.61
    原矿100.001.272.281.14100.00100.00100.00
    120精矿13.935.6613.395.7263.1382.5669.29
    尾矿86.070.540.460.4136.8717.4430.71
    原矿100.001.252.261.15100.00100.00100.00
    160精矿17.234.6210.724.6863.2282.0968.97
    尾矿82.770.560.490.4436.7817.9131.03
    原矿100.001.262.251.17100.00100.00100.00
    200精矿17.584.4210.514.6063.1782.1369.67
    尾矿82.420.550.490.4336.8317.8730.33
    原矿100.001.232.251.16100.00100.00100.00
    下载: 导出CSV

    表 7  浮选工艺对比实验结果

    Table 7.  Comparison test results of flotation process

    工艺
    流程
    产品名称产率/%品位/%回收率/%
    CuPbZnCuPbZn
    氧硫
    混选
    精矿16.234.6611.084.9160.5379.5569.33
    中矿2.030.764.460.871.234.011.54
    尾矿81.740.580.450.4138.2416.4429.13
    原矿100.001.252.261.15100.00100.00100.00
    先硫
    后氧
    精矿14.235.2912.465.6561.1678.8368.68
    中矿2.591.535.571.063.236.412.35
    尾矿83.180.530.400.4135.6114.7628.97
    原矿100.001.232.251.17100.00100.00100.00
    下载: 导出CSV

    表 8  “先硫后氧”混合浮选实验结果

    Table 8.  Mixed flotation test results of "sulfur first and oxygen then"

    产品名称产率/%品位/%回收率/%
    CuPbZnCuPbZn
    精矿4.6411.6528.6813.4842.5859.4055.37
    中矿11.433.309.996.783.726.388.58
    中矿23.213.217.241.698.1210.384.81
    中矿36.931.742.290.439.507.082.66
    中矿41.791.874.391.072.633.511.70
    中矿50.891.813.881.071.271.540.84
    尾矿80.550.500.310.3631.4711.2325.64
    原矿100.001.272.241.13100.00100.00100.00
    下载: 导出CSV

    表 9  闭路浮选实验结果

    Table 9.  Closed circuit flotation test results

    产品名称产率/%品位/%回收率/%
    CuPbZnAu*Ag*CuPbZnAuAg
    精矿6.4311.6028.6112.561.65350.0858.7480.7170.8240.7539.64
    尾矿93.570.560.470.360.1636.6141.2619.2929.1859.2560.36
    原矿100.001.272.281.140.2656.76100.00100.00100.00100.00100.00
    *单位为g/t
    下载: 导出CSV
  • [1]

    王艳, 高歌, 陈健龙, 等. 西藏甲玛矽卡岩型铜铅锌多金属矿石工艺矿物学研究[J]. 黄金, 2018, 39(5):50-54.WANG Y, GAO G, CHEN J L, et al. Process mineralogical study on a skarn-type copper, lead and zinc polymetallic ore from Tibet[J]. Gold, 2018, 39(5):50-54.

    WANG Y, GAO G, CHEN J L, et al. Process mineralogical study on a skarn-type copper, lead and zinc polymetallic ore from Tibet[J]. Gold, 2018, 39(5):50-54.

    [2]

    吕超, 李尔东, 乔元栋, 等. 西藏某高结合率氧化铜矿选冶联合回收实验研究[J]. 矿产综合利用, 2021(5):177-181.LYU C, LI E D, QIAO Y D, et al. Experimental study on recovery of copper from a high combination ration oxidized copper mine by using flowsheet of dressing-metallurgy in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2021(5):177-181.

    LYU C, LI E D, QIAO Y D, et al. Experimental study on recovery of copper from a high combination ration oxidized copper mine by using flowsheet of dressing-metallurgy in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2021(5):177-181.

    [3]

    张生武, 刘明实. 西藏某铜铅锌多金属硫化矿石选矿试验[J]. 金属矿山, 2011(2):72-75+84.ZHANG S W, LIU M S. Research on beneficiation experiment of Cu-Pb-Zn multi-metal sulfide ore in Tibet[J]. Metal Mine, 2011(2):72-75+84.

    ZHANG S W, LIU M S. Research on beneficiation experiment of Cu-Pb-Zn multi-metal sulfide ore in Tibet[J]. Metal Mine, 2011(2):72-75+84.

    [4]

    解钊, 刘明实, 王李鹏, 等. 甲玛复杂铜多金属矿石合理配矿的实验研究与生产实践[J]. 矿产综合利用, 2022 (2): 61-65.JIE Z , LIU M S, WANG L P, et al. Experimental research and production practice of reasonable ore blending of Jiama complex copper-polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 61-65.

    JIE Z , LIU M S, WANG L P, et al. Experimental research and production practice of reasonable ore blending of Jiama complex copper-polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 61-65.

    [5]

    周涛, 黄国贤, 李飞, 等. 西藏某细粒嵌布难选硫化铜矿选矿实验研究[J]. 矿产综合利用, 2022 (2): 45-50.ZHOU T , HUANG G X, LI F, et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 45-50.

    ZHOU T , HUANG G X, LI F, et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 45-50.

    [6]

    张生武, 刘明实. 西藏甲玛铜多金属矿床铜山铜矿石可选性试验研究[J]. 四川有色金属, 2011(2):31-34.ZHANG S W, LIU M S. Tibet copper polymetallic deposits in Jia Ma copper ore optional test Tongshan[J]. Sichuan Nonferrous Metals, 2011(2):31-34.

    ZHANG S W, LIU M S. Tibet copper polymetallic deposits in Jia Ma copper ore optional test Tongshan[J]. Sichuan Nonferrous Metals, 2011(2):31-34.

    [7]

    张文彬, 徐晓军, 冷崇燕. 铵盐作调整剂在矿石浮选中的应用研究现状[J]. 矿物岩石地球化学通报, 1997(S1):54-55.ZHANG W B, XU X J, LENG C Y. Research status of application of ammonium salt as regulator in ore flotation[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1997(S1):54-55.

    ZHANG W B, XU X J, LENG C Y. Research status of application of ammonium salt as regulator in ore flotation[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1997(S1):54-55.

    [8]

    钟宏, 刘广义, 王晖. 新型捕收剂T-2K在铜矿山中的应用[J]. 有色金属(选矿部分), 2005(1):41-44.ZHONG H, LIU G Y, WANG H. The applications of new collcetor T-2K in copper mines[J]. Nonferrous Metals (Mineral Processing Section), 2005(1):41-44.

    ZHONG H, LIU G Y, WANG H. The applications of new collcetor T-2K in copper mines[J]. Nonferrous Metals (Mineral Processing Section), 2005(1):41-44.

    [9]

    谭欣, 宋磊. 西藏某氧化铜矿石选矿试验研究[J]. 有色金属(选矿部分), 2006(5):1-5.TAN X, SONG L. Experimental research on mineral processing of oxide copper ore in Tibet[J]. Nonferrous Metals(Mineral Processing Section), 2006(5):1-5.

    TAN X, SONG L. Experimental research on mineral processing of oxide copper ore in Tibet[J]. Nonferrous Metals(Mineral Processing Section), 2006(5):1-5.

  • 加载中

(5)

(9)

计量
  • 文章访问数:  451
  • PDF下载数:  148
  • 施引文献:  0
出版历程
收稿日期:  2022-08-19
刊出日期:  2024-06-25

目录