硅灰石-硅酸钠-生物炭复合材料对酸性黄壤的改良研究

张传峰, 朱霞萍, 钟佳祺, 朱梓玲, 赵平, 任维. 硅灰石-硅酸钠-生物炭复合材料对酸性黄壤的改良研究[J]. 矿产综合利用, 2025, 46(1): 95-102. doi: 10.3969/j.issn.1000-6532.2025.01.010
引用本文: 张传峰, 朱霞萍, 钟佳祺, 朱梓玲, 赵平, 任维. 硅灰石-硅酸钠-生物炭复合材料对酸性黄壤的改良研究[J]. 矿产综合利用, 2025, 46(1): 95-102. doi: 10.3969/j.issn.1000-6532.2025.01.010
ZHANG Chuanfeng, ZHU Xiaping, ZHONG Jiaqi, ZHU Ziling, ZHAO Ping, REN Wei. Improvement of Acidic Yellow Soil by Wollastonite- sodium Silicate- biochar Composites[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 95-102. doi: 10.3969/j.issn.1000-6532.2025.01.010
Citation: ZHANG Chuanfeng, ZHU Xiaping, ZHONG Jiaqi, ZHU Ziling, ZHAO Ping, REN Wei. Improvement of Acidic Yellow Soil by Wollastonite- sodium Silicate- biochar Composites[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 95-102. doi: 10.3969/j.issn.1000-6532.2025.01.010

硅灰石-硅酸钠-生物炭复合材料对酸性黄壤的改良研究

  • 基金项目: 贵州省地质矿产勘查开发局科研项目(No [2019]35)
详细信息
    作者简介: 张传峰(1997-),男,硕士研究生,研究方向为酸化土壤的治理
    通讯作者: 朱霞萍(1967-),女,博士,教授,研究方向为土壤、水体环境污染防控及修复技术
  • 中图分类号: TD98

Improvement of Acidic Yellow Soil by Wollastonite- sodium Silicate- biochar Composites

More Information
  • 以硅灰石为基体材料,添加一定量的油菜秸秆与硅酸钠,高温煅烧制备硅灰石-硅酸钠-生物炭的复合材料(Ca-Si-C),并应用于酸性黄壤的改良。复合材料的较佳制备条件为硅灰石∶油菜杆∶硅酸钠的质量比为7∶1∶2、在600 ℃马弗炉煅烧1.5 h。XRD、IR、SEM表征结果表明,Ca-Si-C复合材料表面负载有生物炭,孔隙多,且含较多的-OH、C≡C、-COOH、C-O等官能团。施加2%的Ca-Si-C到pH值为4.7的黄壤,相比于对照,土壤的初始pH值增加1.4个单位;酸害容量增加了11.5 mmol/kg;土壤中钠、钾的溶出量增大;钙、镁、铝的溶出量降低;土壤酸缓冲曲线与铝离子溶出曲线交点由pH值 3.5增大至4.1。Ca-Si-C应用于酸性土壤改良,具有良好的应用前景。

  • 加载中
  • 图 1  制备温度对Ca-Si-C改良效果的影响

    Figure 1. 

    图 2  制备时间对Ca-Si-C改良效果的影响

    Figure 2. 

    图 3  物料质量比对Ca-Si-C改良效果的影响

    Figure 3. 

    图 4  硅灰石(a)和Ca-Si-C材料(b)的XRD

    Figure 4. 

    图 5  硅灰石(a)和Ca-Si-C材料(b)的红外光谱

    Figure 5. 

    图 6  硅灰石(a:2 μm b: 3 μm c: 5 μm)和Ca-Si-C复合材料(d:2 μm e: 5 μm f: 10 μm)的SEM

    Figure 6. 

    图 7  施加Ca-Si-C前后钠溶出量变化

    Figure 7. 

    图 8  施加Ca-Si-C前后钾溶出量变化

    Figure 8. 

    图 9  施加Ca-Si-C前后钙溶出量变化

    Figure 9. 

    图 10  施加Ca-Si-C前后镁溶出量变化

    Figure 10. 

    图 11  施加Ca-Si-C前后铝溶出量变化

    Figure 11. 

    图 12  施加Ca-Si-C前后pH值与铝溶出量的变化

    Figure 12. 

    表 1  供试土壤机械组成

    Table 1.  Mechanical composition of the tested soil

    项目粘粒粉粒砂粒
    粒度/mm-0.005-0.01+0.005-0.05+0.01-0.075+0.01-0.25+0.075-0.5+0.25-1.0+0.5
    含量/%43.1011.1028.805.609.400.901.10
    下载: 导出CSV

    表 2  供试土壤主要化学组成/%

    Table 2.  Main chemical composition of the tested soil

    Fe2O3SiO2Al2O3K2OMnONa2OCaOMgO
    2.7150.3714.2316.150.0170.190.140.47
    下载: 导出CSV
  • [1]

    徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2):238-244.XU R K. Research progress of soil acidification and its control[J]. Soils, 2015, 47(2):238-244.

    XU R K. Research progress of soil acidification and its control[J]. Soils, 2015, 47(2):238-244.

    [2]

    吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤, 2013, 45(4):577-584.WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south china and prevention[J]. Soils, 2013, 45(4):577-584.

    WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south china and prevention[J]. Soils, 2013, 45(4):577-584.

    [3]

    倪中应, 谢国雄, 章明奎. 酸化对耕地土壤镉铅有效性及农产品中镉铅积累的影响[J]. 江西农业学报, 2017, 29(8):52-56.NI Z Y, XIE G X, ZHANG M K. Effects of acidification on bioavailability of cadmium and lead in cultivated land soil and their accumulation in agricultural products[J]. Acta Agriculturae Jiangxi, 2017, 29(8):52-56.

    NI Z Y, XIE G X, ZHANG M K. Effects of acidification on bioavailability of cadmium and lead in cultivated land soil and their accumulation in agricultural products[J]. Acta Agriculturae Jiangxi, 2017, 29(8):52-56.

    [4]

    Hu Y, Cheng H, Tao S. The challenges and solutions for cadmium-contaminated rice in China: a critical review[J]. Environment international, 2016, 92:515-532.

    [5]

    Fageria N K, Nascente A S. Management of soil acidity of South American soils for sustainable crop production[J]. Advances in Agronomy, 2014, 128:221-275.

    [6]

    Zhang X, Guo J, Vogt R D, et al. Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands[J]. Geoderma, 2020, 366:114234. doi: 10.1016/j.geoderma.2020.114234

    [7]

    Pan X Y, Li J Y, Deng K Y, et al. Four-year effects of soil acidity amelioration on the yields of canola seeds and sweet potato and N fertilizer efficiency in an ultisol[J]. Field Crops Research, 2019, 237:1-11. doi: 10.1016/j.fcr.2019.03.019

    [8]

    张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志, 2019, 38(6):1900-1908.ZHANG L Y, ZHAO X Q, SHEN R F. Soil acidification and its ecological effects[J]. Chinese Journal of Ecology, 2019, 38(6):1900-1908.

    ZHANG L Y, ZHAO X Q, SHEN R F. Soil acidification and its ecological effects[J]. Chinese Journal of Ecology, 2019, 38(6):1900-1908.

    [9]

    靳辉勇, 齐绍武, 朱益, 等. 硅酸盐土壤调理剂对蔬菜Cd污染的治理效果[J]. 中国土壤与肥料, 2017(1):149-152.JIN H Y, QI S W, ZHU Y, et al. The governance effect of siliate soil conditioner on cadmium-contaminated in vegetables[J]. Soil and Fertilizer Sciences in China, 2017(1):149-152. doi: 10.11838/sfsc.20170125

    JIN H Y, QI S W, ZHU Y, et al. The governance effect of siliate soil conditioner on cadmium-contaminated in vegetables[J]. Soil and Fertilizer Sciences in China, 2017(1):149-152. doi: 10.11838/sfsc.20170125

    [10]

    庄钟娟, 杜迎辉, 朱瑞艳, 等. 硅酸盐菌剂对水稻生物学性状及养分累积的影响[J]. 中国稻米, 2015, 21(6):88-90+93.ZHUANG Z J, DU Y H, ZHU R Y, et al. Effects of sillicate bacterium on biological character and nutrients accumulation of rice vegetables[J]. China Rice, 2015, 21(6):88-90+93. doi: 10.3969/j.issn.1006-8082.2015.06.020

    ZHUANG Z J, DU Y H, ZHU R Y, et al. Effects of sillicate bacterium on biological character and nutrients accumulation of rice vegetables[J]. China Rice, 2015, 21(6):88-90+93. doi: 10.3969/j.issn.1006-8082.2015.06.020

    [11]

    Shepherd J G, Joseph S, Sohi S P, et al. Biochar and enhanced phosphate capture: mapping mechanisms to functional properties[J]. Chemosphere, 2017, 179:57-74. doi: 10.1016/j.chemosphere.2017.02.123

    [12]

    Zhang M, Shu L, Shen X, et al. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds[J]. Environmental pollution, 2014, 195:84-90. doi: 10.1016/j.envpol.2014.08.018

    [13]

    Yilangai R M, Manu A S, Pineau W, et al. The effect of biochar and crop veil on growth and yield of Tomato (Lycopersicum esculentus Mill) in Jos, North central Nigeria[J]. Current Agriculture Research Journal, 2014, 2(1):37. doi: 10.12944/CARJ.2.1.05

    [14]

    刘慧屿, 娄春荣, 韩英祚, 等. 秸秆生物炭与减量氮肥配施对玉米氮素利用率及土壤结构的影响[J]. 土壤通报, 2020, 51(5):1180-1188.LIU H Y, LOU C R, HAN Y Z, et al. Impact of biochar addition combined with reduced nitrogen fertilizer on nitrogen use efficiency and soil structure in brown earth[J]. Chinese Journal of Soil Science, 2020, 51(5):1180-1188.

    LIU H Y, LOU C R, HAN Y Z, et al. Impact of biochar addition combined with reduced nitrogen fertilizer on nitrogen use efficiency and soil structure in brown earth[J]. Chinese Journal of Soil Science, 2020, 51(5):1180-1188.

    [15]

    赵明柳, 唐守寅, 董海霞, 等. 硅酸钠对重金属污染土壤性质和水稻吸收Cd Pb Zn的影响[J]. 农业环境科学学报, 2016, 35(9):1653-1659.ZHAO M L, TANG S Y, DONG H X, et al. Effects of sodium silicate on soil properties and Cd, Pb and Zn absorption by rice plant[J]. Journal of Agro-Environment Science, 2016, 35(9):1653-1659. doi: 10.11654/jaes.2016-0288

    ZHAO M L, TANG S Y, DONG H X, et al. Effects of sodium silicate on soil properties and Cd, Pb and Zn absorption by rice plant[J]. Journal of Agro-Environment Science, 2016, 35(9):1653-1659. doi: 10.11654/jaes.2016-0288

    [16]

    刘鸣达, 张婧婷, 马聪, 等. 施硅降低碱性土壤铅生物有效性的机制研究[J]. 农业环境科学学报, 2019, 38(3):555-562.LIU M D, ZHANG J T, MA C, et al. Preliminary study on the mechanism by which silicon application reduces lead bioavailability in alkaline soil[J]. Journal of Agro-Environment Science, 2019, 38(3):555-562. doi: 10.11654/jaes.2018-1414

    LIU M D, ZHANG J T, MA C, et al. Preliminary study on the mechanism by which silicon application reduces lead bioavailability in alkaline soil[J]. Journal of Agro-Environment Science, 2019, 38(3):555-562. doi: 10.11654/jaes.2018-1414

    [17]

    王敬华, 张效年, 于天仁. 华南红壤对酸雨酸敏感性的研究[J]. 土壤学报, 1994, 31(4):348-355 .WANG J H, ZHANG X N, YU T R. Study on acid sensitivity of red soil in South China to acid rain[J]. Acta Pedologica Sinica, 1994, 31(4):348-355.

    WANG J H, ZHANG X N, YU T R. Study on acid sensitivity of red soil in South China to acid rain[J]. Acta Pedologica Sinica, 1994, 31(4):348-355.

    [18]

    Ulrich B. Natural and anthropogenic components of soil acidification[J]. Zeitschrift für Pflanzenernä hrung und Bodenkunde, 1986, 149(6):702-717.

    [19]

    张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8):979-984.ZHANG X, WANG D, JIANG C C, et al. Effect of biochar on physicochemical properties of red and yellow brown soils in the South China Region[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8):979-984. doi: 10.3724/SP.J.1011.2013.00979

    ZHANG X, WANG D, JIANG C C, et al. Effect of biochar on physicochemical properties of red and yellow brown soils in the South China Region[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8):979-984. doi: 10.3724/SP.J.1011.2013.00979

    [20]

    廖柏寒, 李长生. 土壤对酸沉降缓冲机制探讨[J]. 环境科学, 1989, 10(1):30-34.LIAO B H, LI C S. Buffering mechanism of soil for acidic precipitation[J]. Environmental Science, 1989, 10(1):30-34. doi: 10.3321/j.issn:0250-3301.1989.01.001

    LIAO B H, LI C S. Buffering mechanism of soil for acidic precipitation[J]. Environmental Science, 1989, 10(1):30-34. doi: 10.3321/j.issn:0250-3301.1989.01.001

    [21]

    朱霞萍, 汪模辉, 李锡坤, 等. 珠江三角洲潮土和水稻土酸缓冲特性实验研究[J]. 环境污染与防治, 2010(1):47-50.ZHU X P, WANG M H, LI X K, et al. Study on acid buffer characters of fluvo-quic soil and paddy soil in the Pearl River Delta South China Region[J]. Environmental Pollution & Control, 2010(1):47-50. doi: 10.3969/j.issn.1001-3865.2010.01.011

    ZHU X P, WANG M H, LI X K, et al. Study on acid buffer characters of fluvo-quic soil and paddy soil in the Pearl River Delta South China Region[J]. Environmental Pollution & Control, 2010(1):47-50. doi: 10.3969/j.issn.1001-3865.2010.01.011

  • 加载中

(12)

(2)

计量
  • 文章访问数:  78
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2022-04-08
刊出日期:  2025-02-25

目录