金精矿中锑的脱除及回收利用

郭金权, 贺来荣, 席海龙, 陈彩霞, 马天飞, 李全. 金精矿中锑的脱除及回收利用[J]. 矿产综合利用, 2025, 46(1): 108-112. doi: 10.3969/j.issn.1000-6532.2025.01.012
引用本文: 郭金权, 贺来荣, 席海龙, 陈彩霞, 马天飞, 李全. 金精矿中锑的脱除及回收利用[J]. 矿产综合利用, 2025, 46(1): 108-112. doi: 10.3969/j.issn.1000-6532.2025.01.012
GUO Jinquan, HE Lairong, XI Hailong, CHEN Caixia, MA Tianfei, LI Quan. Removal and Recycling of Antimony in a Gold Concentrate[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 108-112. doi: 10.3969/j.issn.1000-6532.2025.01.012
Citation: GUO Jinquan, HE Lairong, XI Hailong, CHEN Caixia, MA Tianfei, LI Quan. Removal and Recycling of Antimony in a Gold Concentrate[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 108-112. doi: 10.3969/j.issn.1000-6532.2025.01.012

金精矿中锑的脱除及回收利用

  • 基金项目: 国家重点研发计划项目(2018YF1901600)
详细信息
    作者简介: 郭金权(1978-),男,硕士,工程师,研究方向为有色金属镍、钴冶金及资源综合利用
  • 中图分类号: TD953

Removal and Recycling of Antimony in a Gold Concentrate

  • 本文对金精矿进行了碱浸预处理脱锑,并对脱锑液的回收利用进行了实验研究。实验确定了运用NaOH-Na2S工艺对金精矿中的锑进行了脱除,达到了降低金精矿中杂质元素锑的目的,确定了脱锑较佳工艺参数,即Na2S加入量为理论量的1.8倍、温度80 ℃、NaOH浓度16 g/L、液固比5∶1、时间60 min,在较佳工艺条件下锑脱除率可达98%。可运用中和沉淀法回收利用锑,也可运用氧化法从浸锑液中回收得到合格的锑盐产品,含锑可达49%。

  • 加载中
  • 图 1  温度对锑脱除率的影响

    Figure 1. 

    图 2  硫化钠加入量对锑脱除率的影响

    Figure 2. 

    图 3  NaOH加入量对锑脱除率的影响

    Figure 3. 

    图 4  液固比对锑脱除率的影响

    Figure 4. 

    图 5  脱除时间对锑脱除率的影响

    Figure 5. 

    表 1  金精矿原料化学成分

    Table 1.  Chemical composition of the gold concentrate

    部分金属及SiO2含量/% 贵金属含量/(g/t)
    Ni Cu Fe As Bi Sb SiO2 Au Pd Pt Ag
    0.013 0.048 17.83 6.34 0.009 8 4.32 30.85 52.3 0.05 0.05 17.0
    下载: 导出CSV

    表 2  金精矿中各矿物相对含量统计结果/%

    Table 2.  Statistical results of the relative content of each mineral in gold concentrate

    矿物分类矿物名称相对含量小计
    金属硫化矿物方铅矿0.0154.17
    黄铁矿25.83
    辉锑矿10.48
    毒砂17.78
    闪锌矿0.07
    金属氧化物磁铁矿(含少量As、Sb)0.940.94
    硅酸盐矿物(脉石)钾长石19.9544.40
    白云石5.00
    石英19.44
    副矿物锆石0.010.49
    其他0.48
    合计100.00100.00
    下载: 导出CSV

    表 3  工艺条件验证实验结果

    Table 3.  Results of the optimal process condition validation test

    编号渣量/g含量脱除率/%
    Sb/%Au/(g/t)SbAu
    原料1# 200.0 4.32 52.3
    1# 184.8 0.074 56.4 98.41 0.36
    2# 188.4 0.079 55.2 98.27 0.58
    下载: 导出CSV

    表 4  较佳工艺条件下脱锑金属平衡

    Table 4.  Antimony removal metal balance sheet at the recommended process conditions

    类别名称物料量SbAu
    品位含量/g分配率/%品位/(g/t)含量/g分配率/%
    投入原料600 g4.32%25.92100.0052.30.031 38100.00
    合计25.92100.000.031 38100.00
    产出530.4 g0.07%0.3711.4361.770.032 76100.00
    2 900 mL8.70 g/L25.2397.56未检出00
    洗水950 mL0.27 g/L0.2570.99未检出00
    合计25.86100.000.032 76100.00
    误差率+0.23%+4.14%
    下载: 导出CSV

    表 5  中和法沉淀锑实验结果

    Table 5.  Results of the neutralization method for the precipitation antimony test

    名称液/渣量Sb含量
    浸锑液2 000 mL7.77 g/L
    中和液1 881 mL0.002 7 g/L
    中和渣34.2 g45.12%
    沉淀率99.29%
    下载: 导出CSV

    表 6  氧化实验产出锑盐成分/%

    Table 6.  Antimony salt composition obtained from the concentrated oxidation test

    实验编号SbMn
    1#49.630.006 5
    2#49.090.005 1
    下载: 导出CSV
  • [1]

    李勇, 徐忠敏, 吕翠翠, 等. 碱浸预处理提高某含砷锑难处理金精矿回收率的试验研究[J]. 黄金, 2013, 34(3):61-64.LI Y, XU Z M, LYU C C, et al. Experimental research on the improvement of gold recovery rate applying alkaline leaching pretreatment of a refractory arsenic and antimony contained gold concentrate[J]. Gold, 2013, 34(3):61-64.

    LI Y, XU Z M, LYU C C, et al. Experimental research on the improvement of gold recovery rate applying alkaline leaching pretreatment of a refractory arsenic and antimony contained gold concentrate[J]. Gold, 2013, 34(3):61-64.

    [2]

    王梅君, 谢洪珍. Solomon某金矿浸出工艺探索研究[J]. 矿产综合利用, 2020(2):71-74.WANG M J, XIE H Z. Study on leaching technology of a gold ore in Solomon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):71-74. doi: 10.3969/j.issn.1000-6532.2020.02.012

    WANG M J, XIE H Z. Study on leaching technology of a gold ore in Solomon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):71-74. doi: 10.3969/j.issn.1000-6532.2020.02.012

    [3]

    贺秀珍, 钟清慎, 马玉天, 等. 复杂金精矿矿物特性及焙烧预处理工艺研究[J]. 有色金属(冶炼部分), 2014(8):38-41.HE X Z, ZHONG Q S, MA Y T, et al. Study of mineral characteristics and roasting pretreatment technology of complex gold concentrate[J]. Nonferrous Metals(Extractive Mentallurgy), 2014(8):38-41.

    HE X Z, ZHONG Q S, MA Y T, et al. Study of mineral characteristics and roasting pretreatment technology of complex gold concentrate[J]. Nonferrous Metals(Extractive Mentallurgy), 2014(8):38-41.

    [4]

    温建康, 阮仁满. 高硫含砷金精矿加碱焙烧—氰化浸出工艺的研究[J]. 黄金, 1996, 17(9):34-37.WEN J K, RUAN R M. Study on alkalinebaking-cyanide leaching of high-sulfur, arsenic-containing gold concentrate[J]. Gold, 1996, 17(9):34-37.

    WEN J K, RUAN R M. Study on alkalinebaking-cyanide leaching of high-sulfur, arsenic-containing gold concentrate[J]. Gold, 1996, 17(9):34-37.

    [5]

    靳冉公, 王云, 李云, 等. 碱性硫化钠浸出含锑金精矿过程中金锑行为[J]. 有色金属(冶炼部分), 2014(7): 38-41.JIN R G, WANG Y, LI Y, et al. Behavior of gold and antimony during leaching of Sb-bearing gold concentrate sodium sulfide. Nonferrous Metals(Extractive Mentallurgy), 2014(7): 38-41.

    JIN R G, WANG Y, LI Y, et al. Behavior of gold and antimony during leaching of Sb-bearing gold concentrate sodium sulfide. Nonferrous Metals(Extractive Mentallurgy), 2014(7): 38-41.

    [6]

    张水龙, 刘金艳, 杨林恒, 等. 吉林铜钴镍多金属硫化矿的生物浸出实验研究[J]. 矿产综合利用, 2020(1):50-53.ZHANG S L, LIU J Y, YANG L H, et al. Bioleaching of copper-cobalt-nickel polymetallic sulfide ores in Jilin[J]. Multipurpose Utilization of Mineral Resources, 2020(1):50-53. doi: 10.3969/j.issn.1000-6532.2020.01.010

    ZHANG S L, LIU J Y, YANG L H, et al. Bioleaching of copper-cobalt-nickel polymetallic sulfide ores in Jilin[J]. Multipurpose Utilization of Mineral Resources, 2020(1):50-53. doi: 10.3969/j.issn.1000-6532.2020.01.010

    [7]

    李双双, 戴友芝, 罗春香, 等. 锑在水中的形态变化及除锑技术现状[J]. 化工环保, 2009, 29(2):131-134.LI S S, DAI Y Z, LUO C X, et al. Morphological changes of antimony in water and status quo of antimony-removal technologies[J]. Enviromental protection of chemical industry, 2009, 29(2):131-134. doi: 10.3969/j.issn.1006-1878.2009.02.008

    LI S S, DAI Y Z, LUO C X, et al. Morphological changes of antimony in water and status quo of antimony-removal technologies[J]. Enviromental protection of chemical industry, 2009, 29(2):131-134. doi: 10.3969/j.issn.1006-1878.2009.02.008

  • 加载中

(5)

(6)

计量
  • 文章访问数:  46
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2022-03-16
刊出日期:  2025-02-25

目录