响应曲面法优化微波干燥赤泥工艺

郑雪梅, 冉茂康, 罗登丽, 马爱元. 响应曲面法优化微波干燥赤泥工艺[J]. 矿产综合利用, 2025, 46(1): 174-180. doi: 10.3969/j.issn.1000-6532.2025.01.023
引用本文: 郑雪梅, 冉茂康, 罗登丽, 马爱元. 响应曲面法优化微波干燥赤泥工艺[J]. 矿产综合利用, 2025, 46(1): 174-180. doi: 10.3969/j.issn.1000-6532.2025.01.023
ZHENG Xuemei, RAN Maokang, LUO Dengli, MA Aiyuan. Optimization Study on the Microwave Drying of Red Mud Using Response Surface Methodology[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 174-180. doi: 10.3969/j.issn.1000-6532.2025.01.023
Citation: ZHENG Xuemei, RAN Maokang, LUO Dengli, MA Aiyuan. Optimization Study on the Microwave Drying of Red Mud Using Response Surface Methodology[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 174-180. doi: 10.3969/j.issn.1000-6532.2025.01.023

响应曲面法优化微波干燥赤泥工艺

  • 基金项目: 贵州省教育厅项目(黔教技[2024]157号,黔教技[2024]152号);六盘水市科技局科技发展项目(52020-2023-0-2-6,52020-2024-0-2-8);六盘水师范学院科学研究(培育)项目(LPSSY2023KJYBPY06);六盘水师范学院重点学科建设项目(LPSSYZDXK202001);贵州省煤炭洁净利用重点实验室(黔科合平台人才[2020]2001)
详细信息
    作者简介: 郑雪梅(1987-),女,在读博士,副教授,研究方向为工业固体废弃物资源化
    通讯作者: 马爱元(1988-),男,博士,教授,主要研究方向为冶金固体废弃物资源综合利用。
  • 中图分类号: TF813

Optimization Study on the Microwave Drying of Red Mud Using Response Surface Methodology

More Information
  • 赤泥作为一种铝生产工业废弃物,有价金属元素种类丰富,具有较高的综合利用价值。论文开展了微波清洁干燥赤泥实验研究,考查了微波功率、物料量对赤泥温升行为的影响,表明赤泥升温速率与微波功率成正比,与物料量成反比;在单因素实验基础上,进行了响应曲面法优化实验研究,分别考查了微波功率、物料量和干燥时间对赤泥脱水率的影响,建立了各因素与脱水率之间的数学模型,获得了微波清洁干燥赤泥响应曲面优化工艺参数:控制微波干燥温度为100 ℃,微波功率为700 W,物料量为50 g,干燥时间为12 min时,赤泥的脱水率为97.95%,与模型预测值(98.58%)较为接近。研究结果为赤泥的资源化利用奠定了一定实验基础。

  • 加载中
  • 图 1  赤泥样品XRD

    Figure 1. 

    图 2  微波功率(a)和物料量(b)对赤泥温升行为的影响

    Figure 2. 

    图 3  微波功率(a)和物料量(b)对赤泥脱水率的影响

    Figure 3. 

    图 4  脱水率实测值与预测值对比

    Figure 4. 

    图 5  微波功率、时间、物料量相互作用对赤泥脱水率的影响

    Figure 5. 

    表 1  赤泥的多元素化学成分/%

    Table 1.  Chemical composition of the sample

    Na2OMnOAl2O3SiO2P2O5K2OCaOTiO2SFe2O3
    0.3040.069 710.111.30.2952.6226.26.020.90641.1
    下载: 导出CSV

    表 2  响应曲面法因素水平编码

    Table 2.  Response surface method factor level coding

    因素水平
    -101
    微波功率X1 /W3007001 100
    物料量X2/ g405060
    干燥时间X3/min61218
    下载: 导出CSV

    表 3  中心组合实验设计方案与实验结果

    Table 3.  Test design scheme and results

    序号影响因素脱水率/%
    微波功率X1/W物料量X2/g干燥时间X3/min
    1300.0040.006.0048.81
    21 100.0040.006.0086.86
    3300.0060.006.0034.19
    41 100.0060.006.0093.55
    5300.0040.0018.0090.17
    61 100.0040.0018.0093.48
    7300.0060.0018.0094.58
    81 100.0060.0018.0095.26
    927.2850.0012.004.00
    101 372.7250.0012.0098.69
    11700.0033.1812.0093.55
    12700.0066.8212.0092.17
    13700.0050.001.9134.41
    14700.0050.0022.0998.87
    15700.0050.0012.0098.61
    16700.0050.0012.0098.61
    17700.0050.0012.0098.61
    18700.0050.0012.0098.61
    19700.0050.0012.0098.61
    20700.0050.0012.0098.61
    下载: 导出CSV

    表 4  响应设计的模型拟合性分析

    Table 4.  Model fit analysis of response design

    时序模型的平方和
    来源 平方和 自由度 均方差 F Prob>F 评估
    平均与总和 1.445×105 1 1.445×105
    线性与平均 5 774.96 3 1 924.99 8.93 0.001 0
    2FI与线性 1 244.60 3 414.87 2.45 0.110 1
    二次方与2FI 2 131.09 3 710.36 99.37 <0.000 1 建议的
    二次方与二次方 69.68 4 17.42 58.03 <0.000 1
    残差 1.80 6 0.30
    总和 1.537×105 20 7 685.85
    模型概率统计
    来源 标准 校正R2 预测R2 预测残差平方和 评估
    偏差 R2
    线性型 14.68 0.626 2 0.556 1 0.396 7 5 563.53
    交互型 13.02 0.761 2 0.650 9 0.424 1 5 310.86
    二次方型 2.67 0.992 2 0.985 3 0.933 5 613.51 建议的
    下载: 导出CSV

    表 5  响应面二次模型的方差分析

    Table 5.  Variance analysis of response surface quadratic model

    方差来源 平方和 自由度 均方 F值 Prob > F
    Model 9 150.65 9 1 016.74 142.23 <0.000 1
    X1 2 798.17 1 2 798.17 391.43 <0.000 1
    X2 0.065 1 0.065 9.034×10-3 0.926 2
    X3 2 976.72 1 2 976.72 416.40 <0.000 1
    X1X2 23.39 1 23.39 3.27 0.100 6
    X1X3 1 210.81 1 1 210.81 169.38 <0.000 1
    X2X3 10.40 1 10.40 1.45 0.255 6
    X12 1 213.71 1 1 213.71 169.78 <0.000 1
    X22 50.63 1 50.63 7.08 0.023 8
    X32 1 127.84 1 1 127.84 157.77 <0.000 1
    残差 71.49 10 7.15
    失拟项 71.49 5 14.30
    纯差 0.000 5 0.000
    总误差 9 222.14 19
    下载: 导出CSV

    表 6  回归模型优化工艺参数

    Table 6.  Optimization process parameters of regression model

    微波功率/
    W
    物料量/
    g
    干燥温度/
    干燥时间/
    min
    脱水率 /%
    预测值实验值
    700 50 100 12 98.58 97.95
    下载: 导出CSV
  • [1]

    吴世超, 朱立新, 孙体昌, 等. 赤泥综合利用现状及展望[J]. 金属矿山, 2019(6):38-44.WU S C, ZHU L X, SUN T C, et al. Comprehensive utilization status and prospect of red mud[J]. Metal Mine, 2019(6):38-44.

    WU S C, ZHU L X, SUN T C, et al. Comprehensive utilization status and prospect of red mud[J]. Metal Mine, 2019(6):38-44.

    [2]

    李义伟, 付向辉, 李立, 等. 赤泥综合回收利用研究进展及展望[J]. 稀土, 2020, 41(6):97-107.LI Y W, FU X H, LI L, et al. Research progress on comprehensive recovery of bauxite residue: a comprehensive review[J]. Chinese Rare Earths, 2020, 41(6):97-107.

    LI Y W, FU X H, LI L, et al. Research progress on comprehensive recovery of bauxite residue: a comprehensive review[J]. Chinese Rare Earths, 2020, 41(6):97-107.

    [3]

    ZHANG J Z, YAO Z Y, WANG K, et al. Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: a critical review[J]. Construction and Building Materials, 2021, 270(8):121419.

    [4]

    MICHELLE P B, LUCAS F A, LARISSA S R, et al. Evaluation and application of sintered red mud and its incorporated clay ceramics as materials for building construction[J]. Journal of Materials Research and Technology, 2020, 9(2):2186-2195. doi: 10.1016/j.jmrt.2019.12.049

    [5]

    李先海, 苏振楠, 谢显胜, 等. 赤泥掺合对水泥混凝土性能及微结构影响研究[J]. 轻金属, 2022(2):5-9.LI X H, SU Z N, XIE X S, et al. Study on the effect of red mud admixture on the performance and microstructure of cement concrete[J]. Light Metals, 2022(2):5-9.

    LI X H, SU Z N, XIE X S, et al. Study on the effect of red mud admixture on the performance and microstructure of cement concrete[J]. Light Metals, 2022(2):5-9.

    [6]

    Liu W C, Yang J K, Xiao B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues[J]. Journal of Hazardous Materials, 2009, 161(1):474-478. doi: 10.1016/j.jhazmat.2008.03.122

    [7]

    常军. 拜耳法赤泥综合回收铝和铁的研究[D]. 昆明: 昆明理工大学, 2018.CHANG J. Research on comprehensive recovery of aluminum and iron from red mud by bayer process[D]. Kunming: Kunming University of Science and Technology, 2018.

    CHANG J. Research on comprehensive recovery of aluminum and iron from red mud by bayer process[D]. Kunming: Kunming University of Science and Technology, 2018.

    [8]

    薛真, 薛彦辉, 王力. 拜耳法赤泥中铝铁的盐酸浸出过程研究[J]. 矿产综合利用, 2018(6):139-143.XUE Z, XUE Y H, WANG L. Study on the hydrochloric acid leaching process of aluminum and iron from Bayer process red mud[J]. Multipurpose Utilization of Mineral Resources, 2018(6):139-143. doi: 10.3969/j.issn.1000-6532.2018.06.029

    XUE Z, XUE Y H, WANG L. Study on the hydrochloric acid leaching process of aluminum and iron from Bayer process red mud[J]. Multipurpose Utilization of Mineral Resources, 2018(6):139-143. doi: 10.3969/j.issn.1000-6532.2018.06.029

    [9]

    路梦雨, 王智勇, 戴惠新, 等. 从赤泥中回收钪研究进展[J]. 矿产综合利用, 2021(5):9-16.LU M Y, WANG Z Y, DAI H X, et al. Research progress of recovering scandium from red mud[J]. Multipurpose Utilization of Mineral Resources, 2021(5):9-16. doi: 10.3969/j.issn.1000-6532.2021.05.002

    LU M Y, WANG Z Y, DAI H X, et al. Research progress of recovering scandium from red mud[J]. Multipurpose Utilization of Mineral Resources, 2021(5):9-16. doi: 10.3969/j.issn.1000-6532.2021.05.002

    [10]

    李博琦, 谢贤, 纪翠翠, 等. 赤泥提钛技术研究现状与展望[J]. 矿冶, 2020, 29(6):87-93.LI B Q, XIE X, JI C C, et al. Research status and prospect of titanium extraction technology from red mud[J]. Mining and Metallurgy, 2020, 29(6):87-93. doi: 10.3969/j.issn.1005-7854.2020.06.017

    LI B Q, XIE X, JI C C, et al. Research status and prospect of titanium extraction technology from red mud[J]. Mining and Metallurgy, 2020, 29(6):87-93. doi: 10.3969/j.issn.1005-7854.2020.06.017

    [11]

    高建阳. 氧化铝工业废弃赤泥直接还原技术研究[J]. 矿产综合利用, 2011(2):37-40.GAO J Y. Technological research on direct reduction of obsolete red mud in alumina industry[J]. Multipurpose Utilization of Mineral Resources, 2011(2):37-40. doi: 10.3969/j.issn.1000-6532.2011.02.011

    GAO J Y. Technological research on direct reduction of obsolete red mud in alumina industry[J]. Multipurpose Utilization of Mineral Resources, 2011(2):37-40. doi: 10.3969/j.issn.1000-6532.2011.02.011

    [12]

    张继军, 赵敏刚, 徐彦国. 新型组合干燥器在镍精矿干燥中的应用[J]. 化学工程, 2009, 37(1):8-10.ZHANG J J, ZHAO M G, XU Y G. Application of novel combination dryer in nickel concentrate drying[J]. Chemical Engineering (China), 2009, 37(1):8-10. doi: 10.3969/j.issn.1005-9954.2009.01.003

    ZHANG J J, ZHAO M G, XU Y G. Application of novel combination dryer in nickel concentrate drying[J]. Chemical Engineering (China), 2009, 37(1):8-10. doi: 10.3969/j.issn.1005-9954.2009.01.003

    [13]

    茹赛红, 曾晖, 方岩雄, 等. 微波干燥和热风干燥对金萱茶叶品质影响[J]. 化工进展, 2012, 31(10):2183-2186.RU S H, ZENG H, FANG Y X, et al. Effect of microwave drying and hot air drying on quality of Jin Xuan tea[J]. Chemical Industry and Engineering Progress, 2012, 31(10):2183-2186.

    RU S H, ZENG H, FANG Y X, et al. Effect of microwave drying and hot air drying on quality of Jin Xuan tea[J]. Chemical Industry and Engineering Progress, 2012, 31(10):2183-2186.

    [14]

    衡银雪, 郑旭煦, 殷钟意, 等. 黄精微波真空-热风联合干燥工艺研究[J]. 应用化工, 2018, 47(5):952-955.HENG Y X, ZHENG X X, YIN Z Y, et al. Study on the microwave vacuum-hot air combined drying process of polygonatum sibiricum[J]. Applied Chemical Industry, 2018, 47(5):952-955. doi: 10.3969/j.issn.1671-3206.2018.05.026

    HENG Y X, ZHENG X X, YIN Z Y, et al. Study on the microwave vacuum-hot air combined drying process of polygonatum sibiricum[J]. Applied Chemical Industry, 2018, 47(5):952-955. doi: 10.3969/j.issn.1671-3206.2018.05.026

    [15]

    马爱元, 郑雪梅, 孙成余, 等. 微波技术在材料制备与矿物冶金中的应用[J]. 稀有金属, 2019, 44(10):1094-1107.MA A Y, ZHENG X M, SUN C Y, et al. Application of microwave technology in mineral metallurgy and material preparation[J]. Chinese Journal of Rare Metals, 2019, 44(10):1094-1107.

    MA A Y, ZHENG X M, SUN C Y, et al. Application of microwave technology in mineral metallurgy and material preparation[J]. Chinese Journal of Rare Metals, 2019, 44(10):1094-1107.

    [16]

    刘璐, 魏光涛, 辛宗武, 等. 微波加热强化赤泥浸铁的研究[J]. 非金属矿, 2019, 42(6):6-10.LIU L, WEI G T, XIN Z W, et al. Study on the enhancement of iron leaching from red mud by microwave heating[J]. Non-metallic Minerals, 2019, 42(6):6-10. doi: 10.3969/j.issn.1000-8098.2019.06.002

    LIU L, WEI G T, XIN Z W, et al. Study on the enhancement of iron leaching from red mud by microwave heating[J]. Non-metallic Minerals, 2019, 42(6):6-10. doi: 10.3969/j.issn.1000-8098.2019.06.002

    [17]

    刘成龙, 周莉莉, 夏举佩, 等. 基于响应曲面法高效浸出煤矸石中钛的工艺优化[J]. 矿产综合利用, 2021(6):59-65.LIU C L, ZHOU L L, XIA J P, et al. Optimization of high-efficiency leaching of titanium from coal gangue with response surface method[J]. Multipurpose Utilization of Mineral Resources, 2021(6):59-65. doi: 10.3969/j.issn.1000-6532.2021.06.011

    LIU C L, ZHOU L L, XIA J P, et al. Optimization of high-efficiency leaching of titanium from coal gangue with response surface method[J]. Multipurpose Utilization of Mineral Resources, 2021(6):59-65. doi: 10.3969/j.issn.1000-6532.2021.06.011

  • 加载中

(5)

(6)

计量
  • 文章访问数:  27
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2022-04-06
刊出日期:  2025-02-25

目录