-
摘要:
硫化铜矿固体废弃物作为代表性的大宗固体废弃物,其资源化利用与处置一直是矿山和矿业领域的研究热点。为满足硫化铜矿矿山复垦与生态修复对大量植生基质的需求,通过对酸性废水底泥进行增肥修复,从而替代土壤作为植生基质进行生态修复,实现硫化铜矿酸性废水固体废弃物资源化利用。同时,在矿区植物资源调查的基础上,采用底泥堆土实验与地栽实验验证其可行性并筛选出底泥生态恢复适生植物。研究结果表明:经调理剂增肥修复后的底泥具有理想的植物营养特性,且配置方法简易。研究还筛选出了玉米草、黑麦草、红叶石楠、大叶女贞、刺槐、毛白杨作为底泥生态恢复的适生植物。本研究结果可为同类型矿山固体废弃物资源化利用提供参考。
Abstract:Copper sulfide solid waste as a representative bulk solid waste, its resource utilization and disposal have always been a research hotspot in the field of mining and mining. In order to meet the demand of copper sulfide mine reclamation and ecological restoration for a large number of plant-derived substrates, remediating the bottom sludge of acidic wastewater by increasing fertilizer, thereby replacing the soil as a plant substrate for ecological restoration. Realized the resource utilization of acid wastewater solid waste from copper sulfide mine at the same time, based on the investigation of plant resources in the mining area, the feasibility of the method was verified by the bottom sediment pile soil test and the ground planting test, and the suitable plants for the ecological restoration of the bottom sediment were screened out. The results showed that the sediment with the addition of the conditioner had ideal vegetative characteristics, and the method of disposition was simple. In addition, zeamexicana, ryegrass, photiniafrase, ligustrumlucidum, false acacia and aspen were selected as suitable plants for the ecological restoration of sediment. The results of this study can provide reference to the same type of mining solid waste resource utilization.
-
Key words:
- Copper sulfide mines /
- Solid waste /
- Sediment /
- Plant screening /
- Ecological restoration
-
-
表 1 调理前底泥危害成分浸出总量
Table 1. Total leaching number of hazardous components from bottom sediment before conditioning
危害成分 浸出总量/
(mg/L)浸出液中
浓度限值/(mg/L)GB 8978—1996
一级标准铜 0.036 100 0.5 锌 <0.067 100 2.0 镉 <0.001 3 1 0.1 铅 <0.018 7 5 1.0 铬 <0.003 15 1.5 汞 0.000 49 0.1 0.05 铍 <0.000 2 0.02 0.005 钡 <0.006 2 100 镍 <0.005 5 1.0 银 <0.009 1 5 0.5 砷 <0.000 001 5 0.5 硒 <0.000 1 1 0.1 无机氟化物 4.63 100 10 氰化物 <0.002 5 0.5 表 2 调理前底泥基本理化性质
Table 2. Basic physical and chemical properties of bottom mud before conditioning
pH值 EC
/(mS/m)CEC
/(cmol/kg)有机质
/(g/kg)含水率
/%全氮
/(g/kg)全磷
/(g/kg)全钾
/(g/kg)有效磷
/(mg/kg)有效钾
/(mg/kg)碱解氮
/(mg/kg)6.55±.13 221.86±5.46 14.16±1.82 1.48±.72 63.76 0.09±.02 0.03±.01 0.11±.04 0.54±.06 3.3±.94 3.96±1.84 表 3 增肥修复后底泥理化性质
Table 3. Physical and chemical properties of bottom mud after fertilizer restoration
理化
性质pH值 EC
/(mS/m)CEC
/(cmol/kg)有机质
/(g/kg)含水率
/%全氮
/(g/kg)全磷
/(g/kg)全钾
/(g/kg)有效磷
/(mg/kg)有效钾
/(mg/kg)碱解氮
/(mg/kg)底泥 7.43±.42 234.86±13.82 26.71±3.36 4.27±.58 54.92 0.24±.07 0.05±.024 0.20±.08 1.12±.09 6.4±1.65 8.35±2.71 表 4 底泥堆土种植实验效果
Table 4. Soil piled test results of sediments
植物种类 种植方式 年龄/ d 成活率/ % 株高/ cm 生长周期/d 其他说明 玉米草(Dracocephalum moldavica) 撒种子 30 92.5 30.3~36.4 180~230 叶宽大,覆盖面积广,根系发达,有效改善底泥板结, 60 80.5~86.5 90 117.8~126.4 黑麦草(Lolium perenne L.) 撒种子 30 98.1 15.4~21.0 20~25 生长茂盛,根系覆盖面积广,且出现大量菌丝 60 29.4~32.9 90 62.7~64.1 平车前(Plantago depressa Willd.) 移栽 30 80.2 12.6~15.8 330~360 植株体型小,植物覆盖面积小 60 18.4~22.5 90 24.1~26.7 红叶石楠(Photinia fraseri Dress) 扦插 30 92.5 17.2~22.4 120~180 从30天开始生长速度增快,景观效果良好 90 105.7~109.3 150 151.3~159.3 大叶女贞(Ligustrum compactum(Wall.ex G.Don)Hook.f) 移栽 30 91.7 27.5~31.4 300~330 观察期内持续增长,景观效果良好 90 69.2~73.8 150 113.1~118.6 小叶女贞(Ligustrum quihoui Carr.) 移栽 30 88.3 23.2~28.1 300~360 快速增长期较晚,景观效果一般 90 38.1~43.7 150 79.1~86.2 刺槐(Robinia pseudoacacia) 扦插 30 78.2 83.3~90.0 360~720 前期生长速度快,120天后生长速度开始减慢,根部有根瘤。 90 256.1~263.2 150 360.0~379.9 铁树(Cycas revoluta) 移栽 30 51.7 112.4~112.6 120~180 生长缓慢,且成活率低 90 112.8~113.0 150 113.2~113.5 毛白杨(Populus tomentosa) 扦插 30 75.3 153.1~155.2 180~360 后期生长速度快,植株高大,根系发达 90 200.7~206.7 150 370.4~383.1 表 5 各类适生植物生长情况
Table 5. Growth status of various suitable plants
序号 植物名称 规格/cm 高度 冠幅 胸径 01 红叶石楠 208.5~250.2 83.5~108.5 —— 02 大叶女贞 180.2~193.4 100.2~119.3 —— 03 刺槐 558.9~615.6 181.6~246.7 4.45±1.38 04 毛白杨 586.6~638.3 140.8~196.3 4.84±0.99 -
[1] 潘自维. 新疆难处理铜矿浮选实验研究与应用[J]. 矿产综合利用, 2019(3):31-35.PAN Z W. Experimental study and application of flotation of complex refractory copper ore in Sin Kiang[J]. Multipurpose Utilization of Mineral Resources, 2019(3):31-35. doi: 10.3969/j.issn.1000-6532.2019.03.007
PAN Z W. Experimental study and application of flotation of complex refractory copper ore in Sin Kiang[J]. Multipurpose Utilization of Mineral Resources, 2019(3):31-35. doi: 10.3969/j.issn.1000-6532.2019.03.007
[2] 孙若凡, 刘丹, 杜钰, 等. 黄铜矿、方铅矿分离研究现状及进展[J]. 矿产综合利用, 2021(4):80-86.SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012
SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012
[3] 韩彬, 童雄, 杨波, 等. 澳大利亚某铜尾矿硫化铁矿物高效回收实验研究[J]. 矿产综合利用, 2015(1):31-34.HAN B, TONG X, YANG B, et al. Experimental study on high efficiency recovery of iron sulfide from an Australian copper tailings[J]. Multipurpose Utilization of Mineral Resources, 2015(1):31-34. doi: 10.3969/j.issn.1000-6532.2015.01.007
HAN B, TONG X, YANG B, et al. Experimental study on high efficiency recovery of iron sulfide from an Australian copper tailings[J]. Multipurpose Utilization of Mineral Resources, 2015(1):31-34. doi: 10.3969/j.issn.1000-6532.2015.01.007
[4] Yanchun Li, Ruijun Guo, Wenhui Lu, et al. Research progress on resource utilization of leather solid waste[J]. Journal of Leather Science and Engineering, 2019, 1(1).
[5] 钱嘉伟, 倪文, 许国东, 等. 天然石膏对铜尾矿加气混凝土强度的影响研究[J]. 硅酸盐通报, 2013, 32(1): 117-120+125.QIAN J W, NI W, XU G D, et al. Effect of natural gypsum on strength of aerated concrete with copper tailings [J]. Bulletin of the Silicate. 2013, 32(1): 117-120+125.
QIAN J W, NI W, XU G D, et al. Effect of natural gypsum on strength of aerated concrete with copper tailings [J]. Bulletin of the Silicate. 2013, 32(1): 117-120+125.
[6] Kengni B, Mostert H. Regulation and remediation of the impacts of mine wastes on land and water in South Africa[J]. Journal of Energy & Natural Resources Law, 2021: 1-24.
[7] 王圳, 张均, 陈芳, 等. 贵州省磷矿固体废弃物治理现状与建议[J]. 矿产综合利用, 2019(1): 11-15.WANG Z , ZHANG J, CHEN F, et al. Present situation and suggestion of management of phosphate rock solid waste[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 11-15.
WANG Z , ZHANG J, CHEN F, et al. Present situation and suggestion of management of phosphate rock solid waste[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 11-15.
[8] 庞杰, 郑永兴, 戈保梁, 等. 难选氧化铜矿选冶联合技术研究现状与进展[J]. 矿产综合利用, 2019(5):1-5.PANG J, ZHENG Y X, GE B L, et al. Research status and development of the dressing-metallurgy combination processing of refractory copper oxides[J]. Multipurpose Utilization of Mineral Resources, 2019(5):1-5. doi: 10.3969/j.issn.1000-6532.2019.05.001
PANG J, ZHENG Y X, GE B L, et al. Research status and development of the dressing-metallurgy combination processing of refractory copper oxides[J]. Multipurpose Utilization of Mineral Resources, 2019(5):1-5. doi: 10.3969/j.issn.1000-6532.2019.05.001
[9] 王海军, 王伊杰, 李文超, 等. 全国矿产资源节约与综合利用报告(2019)[M] 北京: 地质出版社, 2019.WANG H J, WANG Y J, LI W C, et al. National report on conservation and comprehensive utilization of mineral resources [M]Beijing: Geological Publishing House, 2019.
WANG H J, WANG Y J, LI W C, et al. National report on conservation and comprehensive utilization of mineral resources [M]Beijing: Geological Publishing House, 2019.
[10] 印万忠, 徐东, 杨耀辉, 等. 承德某钒钛磁铁矿尾矿资源化利用技术研究[J]. 矿产综合利用, 2020(6):37-42.YIN W Z, XU D, YANG Y H, et al. Research on the recycling technology for a vanadium-titanium magnetite tailings in Chengde[J]. Multipurpose Utilization of Mineral Resources, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007
YIN W Z, XU D, YANG Y H, et al. Research on the recycling technology for a vanadium-titanium magnetite tailings in Chengde[J]. Multipurpose Utilization of Mineral Resources, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007
[11] 徐正震, 梁精龙, 李慧, 等. 含钒废弃物中钒的回收研究现状及展望[J]. 矿产综合利用, 2020(3):8-13.XU Z Z, LIANG J L, LI H, et al. Research status and prospects of vanadium recovery in vanadium containing wastes[J]. Multipurpose Utilization of Mineral Resources, 2020(3):8-13. doi: 10.3969/j.issn.1000-6532.2020.03.002
XU Z Z, LIANG J L, LI H, et al. Research status and prospects of vanadium recovery in vanadium containing wastes[J]. Multipurpose Utilization of Mineral Resources, 2020(3):8-13. doi: 10.3969/j.issn.1000-6532.2020.03.002
[12] 敖顺福. 有色金属矿山尾矿综合利用进展[J]. 矿产保护与利用, 2021, 41(3):94-103.AO S F. Progress in comprehensive utilization of non-ferrous metal mine tailings[J]. Mineral Protection and Utilization, 2021, 41(3):94-103.
AO S F. Progress in comprehensive utilization of non-ferrous metal mine tailings[J]. Mineral Protection and Utilization, 2021, 41(3):94-103.
[13] 王丹丹. 矿山固废堆积体生态修复与耕植技术研究[D]西安: 西京学院, 2020.WANG D D. Research on ecological restoration and cultivation technology of mine solid waste accumulation [D]. Xi’an Xijing University, 2020.
WANG D D. Research on ecological restoration and cultivation technology of mine solid waste accumulation [D]. Xi’an Xijing University, 2020.
[14] 柴志伟, 俞炎良. 金属矿山选矿尾矿及废水处理关键技术分析[J]. 世界有色金属, 2018(6): 87+89.CHAI Z W, YU Y L. Analysis of key technologies of metal mine dressing tailings and wastewater treatment [J]. World Non-Ferrous Metals, 2018(6): 87+89.
CHAI Z W, YU Y L. Analysis of key technologies of metal mine dressing tailings and wastewater treatment [J]. World Non-Ferrous Metals, 2018(6): 87+89.
[15] 艾艳君. 绿肥辅助钒钛磁铁矿尾矿生态修复研究[D].唐山: 华北理工大学矿业工程学院, 2016: 1−2.AI Y J. Study on ecological restoration of vanadium titanomagnetite tailings assisted by green manure [D]. Tangshan: School of Mining Engineering, North China University of Science and Technology, 2016: 1-2.
AI Y J. Study on ecological restoration of vanadium titanomagnetite tailings assisted by green manure [D]. Tangshan: School of Mining Engineering, North China University of Science and Technology, 2016: 1-2.
[16] Tang C, Chen Y, Zhang Q, et al. Effects of peat on plant growth and lead and zinc phytostabilization from lead-zinc mine tailing in southern China: Screening plant species resisting and accumulating metals[J]. Ecotoxicology and Environmental Safety, 2019, 176:42-49. doi: 10.1016/j.ecoenv.2019.03.078
[17] 李小生. 德兴铜矿废水处理系统的HDS工艺改造[J]. 金属矿山, 2010(2):179-181.LI X S. HDS process renovation of wastewater treatment system in Dexing Copper Mine[J]. Metal mine, 2010(2):179-181.
LI X S. HDS process renovation of wastewater treatment system in Dexing Copper Mine[J]. Metal mine, 2010(2):179-181.
[18] 蔡若妍, 赵珠宇, 谭力, 等. 硫化铜矿酸性环境调节技术研究[J]. 环境监测管理与技术, 2024, 36(5):1-6+12.CAI R, ZHAO Z, TAN L, et al. Research on acidic environment regulation technology of copper sulphide mines[J]. Environmental Monitoring Management and Technology, 2024, 36(5):1-6+12.
CAI R, ZHAO Z, TAN L, et al. Research on acidic environment regulation technology of copper sulphide mines[J]. Environmental Monitoring Management and Technology, 2024, 36(5):1-6+12.
-