不锈钢除尘灰煤基氢冶金资源化工业实验研究

王明华, 张小兵, 李彬, 雷鹏飞, 余煌鸣, 张红军. 不锈钢除尘灰煤基氢冶金资源化工业实验研究[J]. 矿产综合利用, 2025, 46(2): 60-64, 159. doi: 10.3969/j.issn.1000-6532.2025.02.009
引用本文: 王明华, 张小兵, 李彬, 雷鹏飞, 余煌鸣, 张红军. 不锈钢除尘灰煤基氢冶金资源化工业实验研究[J]. 矿产综合利用, 2025, 46(2): 60-64, 159. doi: 10.3969/j.issn.1000-6532.2025.02.009
WANG Minghua, ZHANG Xiaobing, LI Bin, LEI Pengfei, YU Huangming, ZHANG Hongjun. Industrial Test Research on Stainless Steel Dust with Coal-based Hydrogen Metallurgy for Recycling Purpose[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 60-64, 159. doi: 10.3969/j.issn.1000-6532.2025.02.009
Citation: WANG Minghua, ZHANG Xiaobing, LI Bin, LEI Pengfei, YU Huangming, ZHANG Hongjun. Industrial Test Research on Stainless Steel Dust with Coal-based Hydrogen Metallurgy for Recycling Purpose[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 60-64, 159. doi: 10.3969/j.issn.1000-6532.2025.02.009

不锈钢除尘灰煤基氢冶金资源化工业实验研究

  • 基金项目: 甘肃省科技计划(20ZD7GB013);嘉峪关市科技计划(20-01)
详细信息
    作者简介: 王明华(1964-),男,高级工程师,主要从事煤基氢冶金研究等
  • 中图分类号: TD989

Industrial Test Research on Stainless Steel Dust with Coal-based Hydrogen Metallurgy for Recycling Purpose

  • 采用自主研发的煤基氢冶金技术和煤基氢冶金回转窑工业实验装置,系统开展了不锈钢除尘灰无害化、资源化工业实验,在氢冶金还原温度1 250 ℃、在窑时间3 h左右的条件下,取得镍、铁、铬金属化率分别为100%、91.24%和86.18%,产出所有物料均低于浸出毒性鉴别标准限值的优异结果。完成了不锈钢除尘灰煤基氢冶金过程的热力学分析。形成了以煤基氢冶金回转窑技术为核心,包含有干式冷却、干式磁选、重力跳汰分选等主要工序的不锈钢除尘灰煤基氢冶金回转窑无害化、资源化工艺包。

  • 加载中
  • 图 1  不锈钢除尘灰煤基氢冶金回转窑工业实验流程

    Figure 1. 

    图 2  金属料中Ni、Fe、Cr元素的金属化率

    Figure 2. 

    表 1  不锈钢除尘灰主要化学成分/%

    Table 1.  Main chemical components of stainless steel dust

    TFeCr2O3CaOSiO2MgOAl2O3Na2OK2OZnONiSPC其他
    39.013.7011.404.102.900.880.870.630.311.500.170.021.4023.12
    下载: 导出CSV

    表 2  不锈钢除尘灰浸出毒性鉴别结果/(mg/L)

    Table 2.  Extraction toxicity identification results of stainless steel dust

    样品危害成分浸出浓度 总铬 Cr6+
    危害成分浓度限值 <15 <5
    不锈钢除尘灰 19.40 18.60
    下载: 导出CSV

    表 3  广汇煤元素分析结果/%

    Table 3.  Elemental analysis results of Guanghui coal

    CarHarOarNarSt, ad
    60.864.5914.610.840.18
    下载: 导出CSV

    表 4  煤基氢冶金回转窑工艺参数

    Table 4.  Process parameters of coal-based hydrogen metallurgy rotary kiln

    项目 工艺参数
    高温段温度/℃ 1 250
    在窑时间/h 3
    投料量/ (t/h) 5.9
    残炭量/ (t/h) 1.8
    抛煤量/ (t/h) 0.6
    下载: 导出CSV

    表 5  磁性金属料化学成分/%

    Table 5.  Chemical composition of magnetic metallized materials

    TFeMFeSiO2CaOMgOAl2O3SPCr2O3NiC
    49.1036.9516.9910.722.859.061.250.104.300.661.72
    下载: 导出CSV

    表 6  非磁性金属料化学成分/%

    Table 6.  Chemical composition of non-magnetic metallized materials

    TFeSiAlPCrNi
    75.700.330.980.0615.503.00
    下载: 导出CSV

    表 7  残炭化学成分/%

    Table 7.  Chemical composition of carbon residues

    CTFeSiO2CaOMgOAl2O3SCr2O3Ni
    87.314.292.672.010.891.340.381.060.05
    下载: 导出CSV

    表 8  布袋除尘灰化学成分/%

    Table 8.  Chemical composition of bag dust

    TFeSiO2CaOK2ONa2OZnOCr2O3NiC
    8.502.234.0016.3214.4511.023.750.181.48
    下载: 导出CSV

    表 9  各物料浸出毒性鉴别结果/(mg/L)

    Table 9.  Identification results of extraction toxicity of each material

    样品危害成分浸出浓度 总铬 Cr6+
    危害成分浓度限值 <15 <5
    非磁性金属料 0.16 0.03
    磁性金属料 1.21 0.62
    残炭 0.52 0.05
    布袋灰 0.14 0.06
    下载: 导出CSV
  • [1]

    宋海琛, 彭兵. 不锈钢粉尘综合利用现状及研究进展[J]. 矿产综合利用, 2004(3): 18-22.SONG H C, PENG B. Status and research progress of comprehensive utilization of stainless steel dust[J]. Multipurpose Utilization of Mineral Resources, 2004(3): 18-22.

    SONG H C, PENG B. Status and research progress of comprehensive utilization of stainless steel dust[J]. Multipurpose Utilization of Mineral Resources, 2004(3): 18-22.

    [2]

    李具仓. 不锈钢除尘灰的再生利用[J]. 钢铁研究学报, 2013(8): 19-23.LI J C. Recycling and utilization of stainless steel dust[J]. Journal of Iron and Steel Research. 2013(8): 19-23.

    LI J C. Recycling and utilization of stainless steel dust[J]. Journal of Iron and Steel Research. 2013(8): 19-23.

    [3]

    刘卫东. 不锈钢除尘灰的再利用研究与实践[J]. 炼钢, 2011(6):66-69.LIU W D. Research and practice of reuse of stainless steel dust[J]. Steel Making, 2011(6):66-69.

    LIU W D. Research and practice of reuse of stainless steel dust[J]. Steel Making, 2011(6):66-69.

    [4]

    李晨晓, 王书桓, 赵定国, 等. 石灰石微观形貌对其煅烧后物化性能影响[J]. 矿产综合利用, 2020(1):184-187.LI C X, WANG S H, ZHAO D G, et al. Effect of microscopic morphology of limestone on its physical and chemical properties after calcining[J]. Multipurpose Utilization of Mineral Resources, 2020(1):184-187. doi: 10.3969/j.issn.1000-6532.2020.01.037

    LI C X, WANG S H, ZHAO D G, et al. Effect of microscopic morphology of limestone on its physical and chemical properties after calcining[J]. Multipurpose Utilization of Mineral Resources, 2020(1):184-187. doi: 10.3969/j.issn.1000-6532.2020.01.037

    [5]

    王烨敏, 匡亚莉. 柔性空气室跳汰机的性能及应用研究[J]. 矿产综合利用, 2021(2):97-101.WANG Y M, KUANG Y L. Research on performance and application of flexible air chamber jig[J]. Multipurpose Utilization of Mineral Resources, 2021(2):97-101. doi: 10.3969/j.issn.1000-6532.2021.02.018

    WANG Y M, KUANG Y L. Research on performance and application of flexible air chamber jig[J]. Multipurpose Utilization of Mineral Resources, 2021(2):97-101. doi: 10.3969/j.issn.1000-6532.2021.02.018

    [6]

    张小兵, 王明华, 寇明月. 煤基氢冶金绿色短流程制钢新工艺探索性实验研究[J]. 矿冶工程, 2021, 41(6):174-177.ZHANG X B, WANG M H, KOU M Y. Exploratory test research on a new green short-process steelmaking process for coal-based hydrogen metallurgy[J]. Mining and Metallurgical Engineering, 2021, 41(6):174-177. doi: 10.3969/j.issn.0253-6099.2021.06.042

    ZHANG X B, WANG M H, KOU M Y. Exploratory test research on a new green short-process steelmaking process for coal-based hydrogen metallurgy[J]. Mining and Metallurgical Engineering, 2021, 41(6):174-177. doi: 10.3969/j.issn.0253-6099.2021.06.042

    [7]

    汪金生, 吕炜, 赖平生, 等. 高铬型钒钛磁铁矿中铬氧化物还原热力学影响因素分析[J]. 中国科技论文, 2016(11):2509-2513.WANG J S, LYU Y, LAI P S, et al. Analysis of thermodynamic affecting factors on the reduction of chromium oxide in vanadium titanomagnetite with high chromium[J]. Chinese Scientific Papers, 2016(11):2509-2513. doi: 10.3969/j.issn.2095-2783.2016.21.020

    WANG J S, LYU Y, LAI P S, et al. Analysis of thermodynamic affecting factors on the reduction of chromium oxide in vanadium titanomagnetite with high chromium[J]. Chinese Scientific Papers, 2016(11):2509-2513. doi: 10.3969/j.issn.2095-2783.2016.21.020

    [8]

    邱柏欣, 顾幸勇, 董伟霞, 等. 烧成温度对铬铁渣性能影响与表征[J]. 矿产综合利用, 2020(1):188-193.QIU B X, GU X Y, DONG W X, et al. Effect of firing temperatures on properties of ferrochromium slag and its characterization[J]. Multipurpose Utilization of Mineral Resources, 2020(1):188-193. doi: 10.3969/j.issn.1000-6532.2020.01.038

    QIU B X, GU X Y, DONG W X, et al. Effect of firing temperatures on properties of ferrochromium slag and its characterization[J]. Multipurpose Utilization of Mineral Resources, 2020(1):188-193. doi: 10.3969/j.issn.1000-6532.2020.01.038

    [9]

    Ihsan Barin, Ottmar Knacke. Thermochemical properties of inorganic substances[M]. 1973: 212-416.

    [10]

    Ihsan Barin, Ottmar Knacke, Oswald Kubaschewski. Thermochemical properties of inorganic substances Supplement[M]. 1977: 135-166.

    [11]

    方觉非高炉炼铁工艺与理论[M]. 北京: 冶金工业出版社. 27-29.FANG J. Non-blast furnace ironmaking process and theory [M]. Beijing: Metallurgical Industry Press. 27-29.

    FANG J. Non-blast furnace ironmaking process and theory [M]. Beijing: Metallurgical Industry Press. 27-29.

    [12]

    黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 1990.78-80.HUANG X H. The principle of iron and steel metallurgy [M]. Beijing: Metallurgical Industry Press, 1990: 78-80.

    HUANG X H. The principle of iron and steel metallurgy [M]. Beijing: Metallurgical Industry Press, 1990: 78-80.

  • 加载中

(2)

(9)

计量
  • 文章访问数:  20
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2022-07-14
刊出日期:  2025-04-25

目录