-
摘要:
广西大厂矿区选厂在生产中采用摇床重选的方法对锡石进行回收,存在锡石难选、细泥损失大等问题。为强化尾矿中细粒级锡石的回收,提高锡选别作业的回收率,对该选厂摇床重选得到的尾矿开展了锡石细泥回收浮选实验研究。实验结果表明,通过“预先脱硫-锡石浮选”工艺流程,在条件实验的基础上,确定采用2 000 g/t捕收剂,800 g/t活化剂和6 g/t具有消泡功能的辅助捕收剂药剂制度进行浮锡实验,最终重选尾矿选锡闭路实验得到锡品位为7.41%,回收率47.61%的锡精矿,指标良好,经济可行。
Abstract:The concentrator of Dachang mining area in Guangxi adopts the method of shaking table gravity separation to recover cassiterite in production, which has problems such as difficult cassiterite separation and large loss of fine mud. In order to strengthen the recovery of fine-grained cassiterite in tailings, the flotation test of cassiterite fine mud recovery was carried out on the tailings obtained from the shaking table gravity separation of the concentrator. The test results show that through the technological process of flotation “pre-desulfurization and cassiterite flotation”, on the basis of conditional tests, 2 000 g/t collector, 800 g/t activator and 6 g/t defoamer were used for the tin flotation test. The tin concentrate with a tin grade of 7.41% and a recovery rate of 47.61% was obtained in the closed-circuit test, and the index is good and economical.
-
Key words:
- Fin cassiterite /
- Flotation /
- Removal of sulfur /
- Recovery
-
-
表 1 尾矿试样的化学多元素分析/%
Table 1. Chemical multi-element analysis of tailings specimens
Sn Pb Sb Zn S Fe CaO SiO2 0.76 0.10 0.14 0.24 2.35 10.03 41.72 14.41 表 2 试样的矿物组成分析结果
Table 2. Mineral analysis of the samples
矿物 锡石 磁黄
铁矿方解石 黄铁矿 脆硫
锑铅矿铁闪
锌矿毒砂 石英 含量/% 1.7 7.96 20.96 8.61 1.35 3.89 1.06 17.58 表 3 尾矿试样的粒度分析结果
Table 3. Results of particle size analysis of tailing samples
粒级/mm 产率/% 锡品位/% 锡分布率/% +0.074 19.64 0.06 1.55 -0.074+0.056 21.14 0.32 8.88 -0.056+0.043 13.06 0.58 9.94 -0.043+0.031 15.81 1.27 26.35 -0.031+0.021 11.00 1.28 18.47 -0.021+0.010 5.84 1.55 11.88 -0.010+0.008 2.92 1.28 4.91 -0.008 10.49 1.31 18.02 合计 100.00 0.76 100.00 表 4 脱硫与不脱硫浮锡实验结果
Table 4. Results of removal of sulfur and non-removal of sulfur during cassiterite flotation
条件实验名称 产品 产率/% Sn S 品位/% 回收率/% 品位/% 回收率/% 脱硫浮锡 硫精矿 9.34 0.90 10.98 9.62 44.78 锡精矿 7.14 4.28 39.89 6.05 38.95 锡中矿 10.03 1.26 16.51 3.89 35.20 尾矿 73.49 0.34 32.62 0.39 25.85 给矿 100.00 0.77 100.00 2.01 100.00 不脱硫浮锡 锡精矿 9.86 1.78 22.98 7.90 38.47 锡中矿 31.53 0.78 31.77 2.41 37.51 尾矿 58.61 0.59 45.25 0.83 24.02 给矿 100.00 0.76 100.00 2.03 100.00 表 5 细泥系统脱硫尾矿综合条件闭路实验结果
Table 5. Results of the complete closed-circuit test of desulfurized tailings from the fine mud system
产品名称 产率/% Sn S 品位/% 回收率/% 品位/% 回收率/% 硫精矿 12.36 1.18 18.63 9.42 51.75 锡精矿 5.03 7.41 47.61 7.96 17.78 锡尾矿 82.61 0.32 33.76 0.83 30.47 给矿 100.00 0.78 100.00 2.25 100.00 -
[1] 刘燕, 霍锡晓. 细泥中回收锡石的选矿实验研究[J]. 矿产综合利用, 2017(2):72-74+48.LIU Y, HUO X X. Experimental study on the recovery of cassiterite from fine mud[J]. Multipurpose Utilization of Mineral Resources, 2017(2):72-74+48. doi: 10.3969/j.issn.1000-6532.2017.02.017
LIU Y, HUO X X. Experimental study on the recovery of cassiterite from fine mud[J]. Multipurpose Utilization of Mineral Resources, 2017(2):72-74+48. doi: 10.3969/j.issn.1000-6532.2017.02.017
[2] 黄渝芝, 何东, 刘代才, 等. 旋流器脱泥溢流中微细粒级锡石回收探索实验[J]. 矿冶, 2023, 32(5):57-63.HUANG Y Z, HE D, LIU D C, et al. Experimental study on the recovery of fine-grained cassiterite in the desliming overflow of a cyclone[J]. Mining and Metallurgy, 2023, 32(5):57-63. doi: 10.3969/j.issn.1005-7854.2023.05.009
HUANG Y Z, HE D, LIU D C, et al. Experimental study on the recovery of fine-grained cassiterite in the desliming overflow of a cyclone[J]. Mining and Metallurgy, 2023, 32(5):57-63. doi: 10.3969/j.issn.1005-7854.2023.05.009
[3] 谢禹, 叶国华, 胡艺博, 等. 锡尾矿的资源现状、特点与再选研究进展[J]. 矿冶, 2020, 29(2): 91-97.XIE Y, YE G H, HU Y B, et al. Resource status, characteristics and reprocessing research progress of tin tailings [J]. Mining and Metallurgy, 2020, 29 ( 2 ) : 91-97.
XIE Y, YE G H, HU Y B, et al. Resource status, characteristics and reprocessing research progress of tin tailings [J]. Mining and Metallurgy, 2020, 29 ( 2 ) : 91-97.
[4] 鞠长春, 梁国帅. 某矿细粒级锡再回收浮选实验研究[J]. 有色矿冶, 2023, 39(2): 23-26+19.JU C C, LIANG G S. Experimental study on the re-recovery flotation of fine-grained tin in a mine [J]. Non-ferrous Mining and Metallurgy, 2023, 39 ( 2 ) : 23-26 + 19.
JU C C, LIANG G S. Experimental study on the re-recovery flotation of fine-grained tin in a mine [J]. Non-ferrous Mining and Metallurgy, 2023, 39 ( 2 ) : 23-26 + 19.
[5] 陈瑜, 文书明, 王伊杰, 等. 云南都龙微细粒级锡石浮选实验研究[J]. 矿产综合利用, 2018(4): 32-36.CHEN Y, WEN S M, WANG Y J, et al. Experimental study on flotation of fine cassiterite in Dulong, Yunnan [J]. Multipurpose Utilization of Mineral Resources, 2018 ( 4 ) : 32-36.
CHEN Y, WEN S M, WANG Y J, et al. Experimental study on flotation of fine cassiterite in Dulong, Yunnan [J]. Multipurpose Utilization of Mineral Resources, 2018 ( 4 ) : 32-36.
[6] 罗红莹, 张英, 蔡教忠, 等. 硝酸铅对水杨羟肟酸浮选锡石性能的影响[J]. 矿产综合利用, 2021(2):27-32.LUO H Y, ZHANG Y, CAI J Z, et al. Effect of lead nitrate on the flotation performance of cassiterite by salicylhydroxamic acid[J]. Multipurpose Utilization of Mineral Resources, 2021(2):27-32. doi: 10.3969/j.issn.1000-6532.2021.02.006
LUO H Y, ZHANG Y, CAI J Z, et al. Effect of lead nitrate on the flotation performance of cassiterite by salicylhydroxamic acid[J]. Multipurpose Utilization of Mineral Resources, 2021(2):27-32. doi: 10.3969/j.issn.1000-6532.2021.02.006
[7] 汪泰, 胡真, 何名飞, 等. 锡矿泥浮选工艺研究及工业化应用[J]. 矿冶工程, 2020, 40(3):50-53.WANG T, HU Z, HE M F, et al. Tin slime flotation process research and industrial application[J]. Mining and Metallurgical Engineering, 2020, 40(3):50-53. doi: 10.3969/j.issn.0253-6099.2020.03.013
WANG T, HU Z, HE M F, et al. Tin slime flotation process research and industrial application[J]. Mining and Metallurgical Engineering, 2020, 40(3):50-53. doi: 10.3969/j.issn.0253-6099.2020.03.013
[8] 张帅, 王桂芳, 梁光传, 等. 含硫低品位细粒锡尾矿的回收实验研究[J]. 有色金属(选矿部分), 2023(3):40-48.ZHANG S, WANG G F, LIANG G C, et al. Experimental study on the recovery of sulfur-containing low-grade fine-grained tin tailings[J]. Non-ferrous Metals ( beneficiation part ), 2023(3):40-48.
ZHANG S, WANG G F, LIANG G C, et al. Experimental study on the recovery of sulfur-containing low-grade fine-grained tin tailings[J]. Non-ferrous Metals ( beneficiation part ), 2023(3):40-48.
[9] 杨波, 王晓, 谢贤, 等. 云南某含锡多金属矿尾矿回收微细粒锡石实验[J]. 矿物学报, 2023, 43(4):433-440.YANG B, WANG X, XIE X, et al. Experiment on recovering fine cassiterite from tailings of a tin-bearing polymetallic ore in Yunnan[J]. Journal of Mineralogy, 2023, 43(4):433-440.
YANG B, WANG X, XIE X, et al. Experiment on recovering fine cassiterite from tailings of a tin-bearing polymetallic ore in Yunnan[J]. Journal of Mineralogy, 2023, 43(4):433-440.
[10] 陈珺, 吴杰, 矣建林. 某含锡尾矿锡石浮选实验研究[J]. 矿冶, 2022, 31(1):36-40.CHEN J, WU J, YI J L. Experimental study on flotation of cassiterite from a tin-containing tailings[J]. Mining and Metallurgy, 2022, 31(1):36-40. doi: 10.3969/j.issn.1005-7854.2022.01.007
CHEN J, WU J, YI J L. Experimental study on flotation of cassiterite from a tin-containing tailings[J]. Mining and Metallurgy, 2022, 31(1):36-40. doi: 10.3969/j.issn.1005-7854.2022.01.007
[11] 马爱鹏, 普久然, 石丽芬. 云南某重选尾矿细粒锡石浮选实验研究[J]. 有色金属(选矿部分), 2023(4):163-168.MA A P, PU J R, SHI L F. Experimental study on the flotation of fine cassiterite from a gravity tailings in Yunnan[J]. Non-ferrous Metals ( Beneficiation Part ), 2023(4):163-168.
MA A P, PU J R, SHI L F. Experimental study on the flotation of fine cassiterite from a gravity tailings in Yunnan[J]. Non-ferrous Metals ( Beneficiation Part ), 2023(4):163-168.
[12] 江华. 广西某选厂细泥锡石浮选实验[J]. 现代矿业, 2014, 30(5):48-50.JIANG H. Flotation test of fine slime cassiterite from a concentrator in Guangxi[J]. Modern Mining, 2014, 30(5):48-50. doi: 10.3969/j.issn.1674-6082.2014.05.019
JIANG H. Flotation test of fine slime cassiterite from a concentrator in Guangxi[J]. Modern Mining, 2014, 30(5):48-50. doi: 10.3969/j.issn.1674-6082.2014.05.019
[13] 莫峰, 韩彬. 都龙矿区锡石资源综合高效回收的生产实践[J]. 矿产综合利用, 2018(1):119-122.MO F, HAN B. Production practice of comprehensive and efficient recovery of cassiterite resources in Dulong mining area[J]. Multipurpose Utilization of Mineral Resources, 2018(1):119-122. doi: 10.3969/j.issn.1000-6532.2018.01.026
MO F, HAN B. Production practice of comprehensive and efficient recovery of cassiterite resources in Dulong mining area[J]. Multipurpose Utilization of Mineral Resources, 2018(1):119-122. doi: 10.3969/j.issn.1000-6532.2018.01.026
[14] 汪泰, 胡真, 李汉文. 微细粒锡石浮选药剂筛选及选矿工艺研究[J]. 矿产综合利用, 2020(2):96-101.WANG T, HU Z, LI H W. Research on flotation agent screening and mineral processing technology for fine-grained cassiterite[J]. Multipurpose Utilization of Mineral Resources, 2020(2):96-101. doi: 10.3969/j.issn.1000-6532.2020.02.017
WANG T, HU Z, LI H W. Research on flotation agent screening and mineral processing technology for fine-grained cassiterite[J]. Multipurpose Utilization of Mineral Resources, 2020(2):96-101. doi: 10.3969/j.issn.1000-6532.2020.02.017
[15] 黄翔, 郑永兴, 王振兴. 微细粒级锡矿选矿实验研究[J]. 矿冶, 2023, 32(1):51-59.HUANG X, ZHENG Y X, WANG Z X. Experimental study on beneficiation of fine-grained tin ore[J]. Mining and Metallurgy, 2023, 32(1):51-59. doi: 10.3969/j.issn.1005-7854.2023.01.009
HUANG X, ZHENG Y X, WANG Z X. Experimental study on beneficiation of fine-grained tin ore[J]. Mining and Metallurgy, 2023, 32(1):51-59. doi: 10.3969/j.issn.1005-7854.2023.01.009
[16] 张晶, 简胜, 唐鑫, 等. 国外某锡精矿提质工艺研究[J]. 云南冶金, 2022, 51(1):48-53.ZHANG J, JIAN S, TANG X, et al. Study on the upgrading process of a tin concentrate abroad[J]. Yunnan Metallurgy, 2022, 51(1):48-53. doi: 10.3969/j.issn.1006-0308.2022.01.009
ZHANG J, JIAN S, TANG X, et al. Study on the upgrading process of a tin concentrate abroad[J]. Yunnan Metallurgy, 2022, 51(1):48-53. doi: 10.3969/j.issn.1006-0308.2022.01.009
[17] 张婷, 李平, 冯博, 等. 离心重选-浮选脱硫工艺回收细粒级钨锡矿物的实验研究[J]. 黄金科学技术, 2022, 30(1):113-121.ZHANG T, LI P, FENG B, et al. Experimental study on the recovery of fine-grained tungsten-tin minerals by centrifugal gravity separation-flotation desulfurization process[J]. Gold Science and Technology, 2022, 30(1):113-121. doi: 10.11872/j.issn.1005-2518.2022.01.072
ZHANG T, LI P, FENG B, et al. Experimental study on the recovery of fine-grained tungsten-tin minerals by centrifugal gravity separation-flotation desulfurization process[J]. Gold Science and Technology, 2022, 30(1):113-121. doi: 10.11872/j.issn.1005-2518.2022.01.072
[18] 郑永兴, 宁继来, 吕晋芳, 等. 云南某铜锡尾矿脱硫选锡实验研究[J]. 金属矿山, 2021(5):103-108.ZHENG Y X, NING J L, LYU J F, et al. Experimental study on desulfurization and tin separation of a copper-tin tailings in Yunnan[J]. Metal Mine, 2021(5):103-108.
ZHENG Y X, NING J L, LYU J F, et al. Experimental study on desulfurization and tin separation of a copper-tin tailings in Yunnan[J]. Metal Mine, 2021(5):103-108.
[19] 王进明, 余世磊, 任明强, 等. 重选-浮选工艺回收云南某硫化铅尾矿中的微细粒锡石[J]. 有色金属(选矿部分), 2019(2):29-34.WANG J M, YU S L, REN M Q, et al. Recovery of fine cassiterite from a lead sulfide tailings in Yunnan by gravity separation-flotation process[J]. Nonferrous metals ( mineral processing part ), 2019(2):29-34.
WANG J M, YU S L, REN M Q, et al. Recovery of fine cassiterite from a lead sulfide tailings in Yunnan by gravity separation-flotation process[J]. Nonferrous metals ( mineral processing part ), 2019(2):29-34.
[20] 张兴勋. 某锡石多金属硫化矿浮-重联合选矿实验[J]. 有色金属(选矿部分), 2020(5):17-23.ZHANG X X. Flotation-gravity combined beneficiation test of a cassiterite polymetallic sulfide ore[J]. Non-ferrous Metals ( Beneficiation Part ), 2020(5):17-23.
ZHANG X X. Flotation-gravity combined beneficiation test of a cassiterite polymetallic sulfide ore[J]. Non-ferrous Metals ( Beneficiation Part ), 2020(5):17-23.
[21] Matveeva T N, Chanturiya V A, Getman V V, et al. The Effect of complexing reagents on flotation of sulfide minerals and cassiterite from tin-sulfide tailings[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(3): 346-359.
[22] Zhu L J, Liu J, Zhu Y M, et al. Mechanism of HCA and CEPPA in flotation separation of cassiterite and fluorite[J]. Minerals Engineering, 2022, 187: 107773.
[23] Gong G C, Liu J, Han Y X, et al. Study on flotation performances and adsorption mechanism of 2-carboxyethylphenylphosphinic acid to cassiterite[J]. Separation Science and Technology, 2019, 54(11): 1815-1828.
[24] Jin S Z, Zhang P Y, Ou L M, et al. Flotation of cassiterite using alkyl hydroxamates with different carbon chain lengths: A theoretical and experimental study[J]. Minerals Engineering, 2021, 170: 107025.
-