-
摘要:
废弃钻井液的主要成分是重晶石、石英、方解石,但在浮选过程中三种矿物表现出相似的物理化学性质,增加了分离回收重晶石的难度。本研究开发了一种新型组合抑制剂(WFF),由结冷胶(GG)、β环状糊精和硫酸亚铁(FeSO4)组成,以十二烷基硫酸钠(SDS)作为捕收剂进行浮选。通过反浮选实验,从废弃钻井液中回收了密度为4.11 g/cm3、品位为91.86%的重晶石精矿。此外,利用红外光谱、X射线衍射分析、X射线荧光光谱、吸附量测定、润湿性和表面张力测试,揭示了WFF的作用机制。结果表明,WFF选择性地吸附在石英和方解石上,提高了SDS对这两种矿物的吸附性能,而几乎不影响重晶石的浮选性能,实现了从废弃钻井液中高效浮选回收重晶石的目的。
Abstract:The primary constituents of discarded drilling fluid are barite, quartz, and calcite. However, during the flotation process, these three minerals exhibit similar physicochemical properties, complicating the separation and recovery of barite. To address this, a novel composite inhibitor (WFF) was developed, consisiting of guar gum (GG), β-cyclodextrin, and ferrous sulfate (FeSO4), using sodium dodecyl sulfate (SDS) as the collector for flotation. Through reverse flotation experiments, barite concentrate with a density of 4.11 g/cm3 and a purity of 91.86% was successfully recovered from the discarded drilling fluid. In addition, the mechanism of action of WFF was elucidated using infrared spectroscopy, X-ray diffraction analysis, X-ray fluorescence spectroscopy, adsorption capacity measurement, wettability, and surface tension tests. The results indicated that WFF selectively adsorbed on quartz and calcite, enhancing the adsorption performance of SDS on these two minerals, while barely affecting the flotation performance of barite. This enabled efficient flotation recovery of barite from discarded drilling fluid.
-
Key words:
- Mining processing engineering /
- Flotation /
- Barite /
- Waste drilling fluid /
- Inhibitors /
- Collectors /
- Mechanism study
-
-
表 1 西南油气田高密度废钻井液样品矿物组成及含量/%
Table 1. Mineral composition and content of high-density waste drilling fluid samples from the Southwest oil and gas field
重晶石 石英 方解石 粘土矿物 79 11 7 3 表 2 样品的粒度分析结果
Table 2. Particle size analysis results of the sample
样品 密度/(g/cm3) d/0.1 μm d/0.5 μm d/0.9 μm 西南油气田
高密度废
钻井液G87-1#原浆(超
声处理)2.010 2.169 5.845 18.639 原浆 2.134 5.208 16.391 -
[1] 蒋海勇, 张发明, 陈志杰, 等. 酸化水玻璃对重晶石与白云石浮选分离行为的影响 [J] 矿产综合利用. 2022 (2): 121-126.JIANG H Y, ZHANG F M, CHEN Z J, et al. The effect of acidized sodium silicate on flotation separation behavior of barite and dolomite[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 121-126.
JIANG H Y, ZHANG F M, CHEN Z J, et al. The effect of acidized sodium silicate on flotation separation behavior of barite and dolomite[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 121-126.
[2] 刘棋勇, 赖杨. 贵州务川双河重晶石-萤石矿成矿地质特征及成因分析 [J] 矿产综合利用. 2022 (1): 25-31.LIU Q Y, LAI Y. Discussion on metallogenic geological characteristics and genesis of Shuanghe barite-fluorite deposit in Wuchuan, Guizhou Province[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 25-31.
LIU Q Y, LAI Y. Discussion on metallogenic geological characteristics and genesis of Shuanghe barite-fluorite deposit in Wuchuan, Guizhou Province[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 25-31.
[3] WANG L, LYU W, HUANG L, et al. Utilization of gellan gum as a novel eco-friendly depressant in the flotation separation of fluorite from barite [J]. Minerals Engineering, 2022, 184.
[4] 刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺研究 [J] 矿产综合利用. 2020(4): 111-115.LIU Z W, ZHOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 111-115.
LIU Z W, ZHOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 111-115.
[5] 陈佳乐, 水小溪, 赵宝华, 等. 结冷胶的生物合成及其应用研究综述 [J] 河北省科学院学报. 2023, 40(3): 45-52.CHEN J L, SHUI X X, ZHAO B H, et al. Review on biosynthesis mechanism and application of gellan gum[J], Hebei Academy of Sciences Journal, 2023, 40(3): 45-52.
CHEN J L, SHUI X X, ZHAO B H, et al. Review on biosynthesis mechanism and application of gellan gum[J], Hebei Academy of Sciences Journal, 2023, 40(3): 45-52.
[6] 范荣桂, 李冰茹. β-环状糊精在食品工业中的应用 [J]. 食品安全导刊. 2010(7): 56-57.FAN R G, LI B R. Application of β-cyclodextrin in the food industry [J]. Journal of Food Safety 2010(7): 56-7.
FAN R G, LI B R. Application of β-cyclodextrin in the food industry [J]. Journal of Food Safety 2010(7): 56-7.
[7] 汪曙晖. 环状糊精的络合作用及其在食品中的应用 [J]. 中国食品添加剂. 2010(1): 64-68.WANG S H. Complexes from cyclodextrins and use in food industry [J]. Chinese Food Additives 2010(1): 64-68.
WANG S H. Complexes from cyclodextrins and use in food industry [J]. Chinese Food Additives 2010(1): 64-68.
[8] LI S, XIONG Q, LAI X, et al. Molecular modification of polysaccharides and resulting bioactivities[J]. Comprehensive Reviews in Food Science and Food Safety, 2015, 15(2):237-250.
[9] ALGHUNAIM A, KIRDPONPATTARA S, NEWBY B-M Z. Techniques for determining contact angle and wettability of powders[J]. Powder Technology, 2016, 287:201-215. doi: 10.1016/j.powtec.2015.10.002
[10] 何靓. 基于吉布斯自由能的表面浸润状态研究 [D]. 哈尔滨: 哈尔滨工程大学 2019.HE L. Thermodynamic analysis on the wetting behavior of solid surfaces based on Gibbs free energy [D]. Harbin: Harbin Engineering University, 2019.
HE L. Thermodynamic analysis on the wetting behavior of solid surfaces based on Gibbs free energy [D]. Harbin: Harbin Engineering University, 2019.
[11] GURPINAR G, SONMEZ E, BOZKURT V. Effect of ultrasonic treatment on flotation of calcite, barite and quartz[J]. Mineral Processing and Extractive Metallurgy, 2013, 113(2):91-95.
[12] TAO Y, DAI Y, ZHANG Z, et al. Formation of hydroxyl-rich carbon layer coated silica microspheres and its application to enhance hydrolysis of cellulose to sugar [J]. 2023, 202: 276-285.
[13] MAX J-J, CHAPADOS C J T J O P C A. Infrared spectroscopy of aqueous carboxylic acids: comparison between different acids and their salts [J]. 2004, 108(16): 3324-3337.
[14] KUTSUMIZU S, KATO R, YAMADA M, et al. Structural studies of 4 ‘-n-Alkoxy-3 ‘-nitrobiphenyl-4-carboxylic acids by infrared spectroscopic analysis [J]. 1997, 101(50): 10666-10673.
[15] ZHAO H, QI N, LI Y. Interaction between polysaccharide monomer and SiO2/Al2O3/CaCO3 surfaces: A DFT theoretical study[J]. Applied Surface Science, 2019, 466:607-614. doi: 10.1016/j.apsusc.2018.10.085
[16] WANG X, WU G, YUAN C, et al. Molecular dynamics simulations of aggregation behavior of sodium dodecyl sulfate on SiO2 and CaCO3 surfaces[J]. Surface and Interface Analysis, 2017, 50(3):284-289.
[17] BRATOŽ S, HADŽI D, SHEPPARD N J S A. The infra-red absorption bands associated with the COOH and COOD groups in dimeric carboxylic acid—II: the region from 3 700 to 1 500 cm− 1 [J]. 1956, 8(4-5): 249-261.
[18] BAO H, LI L, GAN L H, et al. Interactions between ionic surfactants and polysaccharides in[J]. Macromolecules, 2008, 41:9406-9421. doi: 10.1021/ma801957v
[19] KATSUTA S, TSUMURA T, SAITOH K, et al. Control of selectivity in micellar electrokinetic chromatography[J]. Journal of Chromatography, 1995, 705(2):319-324. doi: 10.1016/0021-9673(95)00291-T
[20] NORDIN P, JILKA R, CHASE P, et al. extraction of polysaccharides from wheat[J]. Phytochemistry, 1975, 14:1355-1358. doi: 10.1016/S0031-9422(00)98625-4
[21] Patist Alexander, T Axelberd, D O Shah. Effect of long chain alcohols on micellar relaxation time and foaming properties of sodium dodecyl sulfate solutions[J]. Journal of Colloid & Interface Science, 1998, 208.1:259-265.
[22] RICKS A, REED Z, DUNCAN M J J O M S. Infrared spectroscopy of mass-selected metal carbonyl cations[J]. Journal of Molecular Spectrocsopy, 2011, 266(2):63-74. doi: 10.1016/j.jms.2011.03.006
[23] OATES A, STAVOLA M J J O A P. Infrared spectrum of oxygen in silicon[J]. Journal of Applied Physics, 1987, 61(8):3114-3116. doi: 10.1063/1.337814
[24] 蔡炳新. 基础物理化学(上册) [M]. 北京: 科学出版社. 2002.CAI B X. Basic Physical Chemistry (Volume 1) [M]. Science Press. 2000.
CAI B X. Basic Physical Chemistry (Volume 1) [M]. Science Press. 2000.
-