-
摘要:
国外某镍钴矿含镍1.10%、含钴0.11%,镍钴主要以离子吸附的形式存在于隐晶质粘土矿物,矿石含有3.96%的Cr2O3,铬基本以铬铁矿的形式存在,具有综合回收的价值。针对矿石中镍钴含量较高,且以吸附形式存在于粘土矿物,粘土矿物在磨矿过程中极易泥化,导致镍钴富集至微细粒级,而铬基本以铬铁矿形式存在,磨矿过程中形成粗细不均的铬铁矿颗粒,结合铬铁矿比重较大的特点,提出矿石磨矿后分级归类-重选回收粗粒铬铁矿-浮选回收细粒铬铁矿的技术思路。采用“旋流器分级-螺旋溜槽粗选-摇床精选-摇床尾矿浮选”工艺流程,选择高效铬铁矿捕收剂GC强化细粒铬铁矿回收,全流程研究结果表明,可以获得Cr2O3品位46.30%,Cr2O3回收率71.95%的铬铁精矿,同时获得Cr2O3含量仅1.16%的镍钴矿浆,为后续冶金回收镍钴创造了有利条件。
Abstract:A foreign nickel-cobalt ore contains 1.10% nickel and 0.11% cobalt, which mainly exists in cryptocrystalline clay minerals in the form of ion adsorption. The ore contains 3.96% Cr2O3, and chromium basically exists in the form of chromite, which has the value of comprehensive recovery. In view of the high content of nickel and cobalt in the ore, and in clay minerals in the form of adsorption, clay minerals are easily sloughed during the grinding process, resulting in nickel and cobalt are enriched to the fine particle level and chromium basically exists in the form of chromite. During the grinding process, chromite particles of varying sizes are produced. Combined with the characteristics of relatively large gravity, the technical idea of grading and classifying after ore grinding, recovery of coarse-grained chromite by gravity separation, and recovery of fine-grained chromite by flotation is proposed adopting the process of "cyclone classification - spiral chute roughing - shaking table cleaning - shaking table tailings flotation" and selecting high-efficiency chromite collector GC to enhance the recovery of fine-grained chromite. The results of the whole process study show that chromite concentrate with Cr2O3 grade of 46.30% and Cr2O3 recovery rate of 71.95% can be obtained. At the same time, the nickel-cobalt slurry with Cr2O3 content of only 1.16% was obtained, creating favorable conditions for subsequent metallurgical recovery of nickel-cobalt.
-
Key words:
- Mineral Processing Engineering /
- Nickel /
- Cobalt /
- Chromium /
- Comprehensive recovery
-
-
表 1 试样化学多元素分析结果/%
Table 1. Multi-element analysis results of the samples
Ni Co Cr2O3 Fe S SiO2 MgO Al2O3 Mn 1.10 0.11 3.96 39.59 0.11 23.97 6.39 8.79 1.24 表 2 试样矿物定量分析结果/%
Table 2. Results of the mineral quantitative test
铬铁矿 磁铁矿 土状褐铁矿 叶蛇纹石 石英 隐晶质粘土矿物 碳酸盐矿物 长石 云母 合计 7.17 2.02 20.23 5.76 20.36 29.86 11.36 2.13 1.11 100.00 表 3 旋流器分级-螺旋溜槽粗选-摇床精选研究实验结果
Table 3. Results of the cyclone classification-spiral chute roughing-shaker cleaning test
产品名称 产率/% 品位/% 回收率/% Cr2O3 Ni Co Cr2O3 Ni Co 铬铁精矿 4.19 48.23 0.22 0.02 51.06 0.84 0.79 摇床尾矿 7.94 12.41 0.36 0.05 24.89 2.60 3.37 螺旋尾矿 12.48 2.07 0.83 0.09 6.53 9.43 10.59 溢流 75.39 0.92 1.27 0.12 17.52 87.13 85.25 原矿 100.00 3.96 1.10 0.11 100.00 100.00 100.00 表 4 抑制剂实验铬铁粗精矿指标
Table 4. Results of inhibitor test of chromite rough concentrate
抑制剂
名称用量/
(g/t)产品
名称作业
产率/%Cr2O3
品位/%Cr2O3作业
回收率/%酸化水玻璃 150 铬铁粗精矿 33.19 29.16 77.56 250 铬铁粗精矿 30.28 30.91 74.98 350 铬铁粗精矿 28.16 31.25 70.81 450 铬铁粗精矿 24.86 32.83 65.66 水玻璃 150 铬铁粗精矿 36.18 26.85 78.05 250 铬铁粗精矿 33.38 28.18 75.35 350 铬铁粗精矿 30.72 29.06 71.68 450 铬铁粗精矿 27.67 29.64 66.04 硫酸 150 铬铁粗精矿 32.18 30.16 78.07 250 铬铁粗精矿 30.22 31.73 76.98 350 铬铁粗精矿 28.93 32.68 75.74 450 铬铁粗精矿 27.38 33.12 72.78 GAS
(无机弱酸)150 铬铁粗精矿 31.92 32.99 84.86 250 铬铁粗精矿 30.58 34.16 84.31 350 铬铁粗精矿 29.03 35.61 83.25 450 铬铁粗精矿 27.12 36.03 78.74 表 5 活化剂实验铬铁粗精矿指标
Table 5. Result of activator test of chromite rough concentrate
抑制剂
名称用量/
(g/t)产品
名称作业
产率/%Cr2O3
品位/%Cr2O3作业
回收率/%硝酸铅 20 铬铁粗精矿 26.93 36.02 78.30 30 铬铁粗精矿 27.94 35.59 80.09 40 铬铁粗精矿 28.41 35.33 81.28 50 铬铁粗精矿 29.01 35.16 82.30 硫酸铜 20 铬铁粗精矿 27.63 35.92 79.53 30 铬铁粗精矿 28.27 35.69 81.42 40 铬铁粗精矿 29.03 35.61 83.25 50 铬铁粗精矿 30.19 34.16 83.78 氯化铁 20 铬铁粗精矿 27.53 35.16 77.92 30 铬铁粗精矿 27.95 35.16 79.16 40 铬铁粗精矿 28.12 34.92 78.78 50 铬铁粗精矿 28.92 34.26 79.89 表 6 捕收剂实验铬铁粗精矿指标
Table 6. Results of collector test of chromite rough concentrate
抑制剂名称 用量/(g/t) 产品名称 作业
产率/%Cr2O3
品位/%Cr2O3作业
回收率/%油酸 30 铬铁粗精矿 17.16 37.16 51.36 40 铬铁粗精矿 21.13 36.86 62.68 50 铬铁粗精矿 23.69 36.07 68.88 60 铬铁粗精矿 25.16 35.42 71.40 GC 30 铬铁粗精矿 23.16 36.98 68.65 40 铬铁粗精矿 26.83 36.47 78.84 50 铬铁粗精矿 29.03 35.61 83.25 60 铬铁粗精矿 31.16 33.52 84.33 氧化石蜡皂 30 铬铁粗精矿 25.13 32.63 65.81 40 铬铁粗精矿 29.25 30.67 72.00 50 铬铁粗精矿 31.28 30.24 76.28 60 铬铁粗精矿 33.69 29.38 79.58 表 7 全流程实验结果
Table 7. Results of the whole process test
产品名称 产率/% 品位/% 回收率/% Cr2O3 Ni Co Cr2O3 Ni Co 铬铁精矿 6.15 46.30 0.24 0.02 71.95 1.32 1.34 镍钴矿浆 93.85 1.18 1.16 0.11 28.05 98.68 98.66 原矿 100.00 3.96 1.10 0.11 100.00 100.00 100.00 -
[1] 《矿产资源综合利用手册》编委会. 矿产资源综合利用手册[M]. 北京: 地质出版社, 2012: 93-117, 294-302.Editorial Board of the Mineral Resources Comprehensive Utilization. Mineral resources industry requirements manual[M]. Beijing: Geological Publishing House, 2012: 93-117, 294-302.
Editorial Board of the Mineral Resources Comprehensive Utilization. Mineral resources industry requirements manual[M]. Beijing: Geological Publishing House, 2012: 93-117, 294-302.
[2] 袁见齐, 朱上庆, 翟裕生. 矿床学[M]. 北京: 地质出版社, 1985: 16-32.YUAN J Q, ZHU S Q , ZHAI Y S. Mineral deposit science [M]. Beijing: Geological Publishing House, 1985: 16-32.
YUAN J Q, ZHU S Q , ZHAI Y S. Mineral deposit science [M]. Beijing: Geological Publishing House, 1985: 16-32.
[3] 李强, 王成行, 胡真, 等. 磁选-重选-浮选强化回收微细粒铬铁矿新工艺研究[J]. 稀有金属, 2021, 45(11): 1359-1367.LI Q, WANG C H , HU Z, et al. New technology of enhanced recovery of fine-grained chromite by magnetic separation-gravity separation-flotation[J]. Chinese Journal of Rare Metals, 2021, 45(11): 1359-1367.
LI Q, WANG C H , HU Z, et al. New technology of enhanced recovery of fine-grained chromite by magnetic separation-gravity separation-flotation[J]. Chinese Journal of Rare Metals, 2021, 45(11): 1359-1367.
[4] 李亮. 菲律宾某低品位难选铬铁矿选矿工艺研究[J]. 现代矿业, 2011, 27(09):5-10.LI L. Research of beneficiation process of a low-grade refractory chromite ore of Philippine[J]. Modern Mining, 2011, 27(09):5-10. doi: 10.3969/j.issn.1674-6082.2011.09.002
LI L. Research of beneficiation process of a low-grade refractory chromite ore of Philippine[J]. Modern Mining, 2011, 27(09):5-10. doi: 10.3969/j.issn.1674-6082.2011.09.002
[5] 皇甫明柱, 胡义明, 袁风香. 国外某铬铁矿选矿试验[J]. 现代矿业, 2015, 31(09):50-53.HUANGFU M Z, HU Y M, YUAN F X. Beneficiation experiment on a chromite ore abroad[J]. Modern Mining, 2015, 31(09):50-53. doi: 10.3969/j.issn.1674-6082.2015.09.019
HUANGFU M Z, HU Y M, YUAN F X. Beneficiation experiment on a chromite ore abroad[J]. Modern Mining, 2015, 31(09):50-53. doi: 10.3969/j.issn.1674-6082.2015.09.019
[6] 李淑菲, 李艳军, 韩跃新, 等. 红土镍矿深度还原-磁选富集镍铁工艺研究[J]. 金属矿山, 2011(03):66-68.LI S F, LI Y J, HAN Y X, et al. Research on nickel-iron enrichment process by deep reduction and magnetic separation of laterite-nickel ore[J]. Metal Mine, 2011(03):66-68.
LI S F, LI Y J, HAN Y X, et al. Research on nickel-iron enrichment process by deep reduction and magnetic separation of laterite-nickel ore[J]. Metal Mine, 2011(03):66-68.
[7] 王亚琴, 李艳军, 张剑廷, 等. 红土镍矿深度还原-磁选试验研究[J]. 金属矿山, 2011(09):68-71+86.WANG Y Q, LI Y J, ZHANG J T, et al. Deep reduction-magnetic separation of laterite-nickel ore[J]. Metal Mine, 2011(09):68-71+86.
WANG Y Q, LI Y J, ZHANG J T, et al. Deep reduction-magnetic separation of laterite-nickel ore[J]. Metal Mine, 2011(09):68-71+86.
[8] 冯建伟. 红土镍矿选矿工艺与设备的现状及展望[J]. 中国有色冶金, 2013, 42(05):1-6.FENG J W. Current status and development tendency of process and equipment of lateritic nickel ore preparation[J]. China Nonferrous Metals, 2013, 42(05):1-6. doi: 10.3969/j.issn.1672-6103.2013.05.001
FENG J W. Current status and development tendency of process and equipment of lateritic nickel ore preparation[J]. China Nonferrous Metals, 2013, 42(05):1-6. doi: 10.3969/j.issn.1672-6103.2013.05.001
[9] 李艳军, 于海臣, 王德全, 等. 红土镍矿资源现状及加工工艺综述[J]. 金属矿山, 2010(11):5-9+15.LI Y J, YU H C, WANG D Q, et al. The current status of laterite nickel ore resources and its processing technology[J]. Metal Mine, 2010(11):5-9+15.
LI Y J, YU H C, WANG D Q, et al. The current status of laterite nickel ore resources and its processing technology[J]. Metal Mine, 2010(11):5-9+15.
[10] 徐飞飞, 于雪, 陈新林, 等. 印尼某含镍钴氧化铁矿工艺矿物学及选矿试验研究[J]. 有色矿冶, 2016, 32(05):24-28+15.XU F F, YU X, CHEN X L, et al. Invesigations on process mineralogy and mineral processing of Indonesia low grade iron oxide ore containing Ni and Co[J]. Non-Ferrous Mining and Metallurgy, 2016, 32(05):24-28+15. doi: 10.3969/j.issn.1007-967X.2016.05.008
XU F F, YU X, CHEN X L, et al. Invesigations on process mineralogy and mineral processing of Indonesia low grade iron oxide ore containing Ni and Co[J]. Non-Ferrous Mining and Metallurgy, 2016, 32(05):24-28+15. doi: 10.3969/j.issn.1007-967X.2016.05.008
-