Study on the Relationship Between Deformation and Failure of Granitoids Slopes and Rainfall Response in the Fengkai Area of Western Guangdong Province
-
摘要: 本文在2017~2019年地质灾害调查的基础上,结合降雨监测数据,系统分析了粤西封开地区斜坡变形破坏与降雨的响应关系。结果表明,斜坡变形破坏多发生在汛期(5~8月),且变形破坏模式为“滑移”、“崩落(坠落)”和“倾倒”三种类型,规模均为小型。“软化崩解”、“渐进性破坏”和“刚性破坏”是花岗岩斜坡主要的变形破坏机理。斜坡变形破坏与单日降雨量和累积降雨量密切相关。斜坡变形破坏多发生在单日降雨量为30 ~ 90 mm区间内,其中与50 ~ 60 mm降雨量响应关系最为显著。斜坡变形破坏与累积降雨量具有明显的相关性;在累积降雨量150 ~ 250 mm区间内响应关系最为显著。相对于降雨,部分斜坡变形破坏有一定的滞后性,滞后期为5~7天。因此,在上述降雨阈值区间,区内花岗岩斜坡隐患点应进入应急预警状态。Abstract: To better understand the responses of granite slope deformation and failure (GSDF) to rainfall, the relationships were analyzed between GSDF and precipitation in Fengkai area of western Guangdong province based on geohazard survey from 2017 to 2019 as well as rainfall monitoring data. Results show that GSDF could be divided into 3 types of sliding, falling, toppling with small dimensions, which typically occur in the flood season (May to August). “Softening and disintegration”, “progressive failure” and “rigid failure” patterns are the major mechanisms of GSDF. Occurrence of GSDF is closely linked to daily and cumulative precipitation. GSDF generally takes place when daily precipitation ranges from 30 to 90 mm, particularly 50 to 60 mm. GSDF is also found to obviously related to cumulative precipitation occurs easily when it is of 150 to 250 mm. Although the GSDF often responds to the rainfall, it may occur 5 to 7 days after raining. Therefore, the hidden geohazard points of granite slopes should be put into early warning stage when precipitation is in the above rainfall threshold range. These results contribute to the strategies of early warning and mitigation of geohazards in granite slopes areas.
-
-
[1] 陈洪凯,董 平,高阳华,唐红梅,唐云辉,谭 玲,魏来,唐 兰.2015.重庆地区降雨型滑坡统计-降雨入渗耦合预报模型[J].重庆师范大学学报(自然科学版),32(1):46-51.
[2] 陈洪凯,魏 来,谭 玲.2012.降雨型滑坡经验性降雨阈值研究综述[J].重庆交通大学学报(自然科学版),31(5):990-996.
[3] 陈静静,姚 蓉,文强,唐 杰,何正阳,曹恒娅.2014.湖南省降雨型地质灾害致灾雨量阈值分析[J].灾害学,29(2):42-47.
[4] 陈宇龙,黄 栋.2017.降雨型堆积体滑坡大尺寸模型试验[J].东北大学学报(自然科学版),38(4):576-580.
[5] 董好刚,彭轩明,陈州丰,刘广宁,霍志涛.2009.缓倾层状高边坡典型破坏模式及宏观判据研究[J].长江科学院院报,26(8):36-40.
[6] 广东省地质调查院,广东省佛山地质局.2013.广西1⁚25万梧州市幅(F49C001003)区域地质调查报告[R].
[7] 简文彬,许旭堂,郑敏洲,柳 侃,赖树钦.2013.土坡失稳的有效降雨量研究[J].岩土力学,34(s2):247-251.
[8] 李长江,麻土华,孙乐玲,朱兴盛.2011.降雨型滑坡预报中计算前期有效降雨量的一种新方法[J].山地学报,29(1):81-86.
[9] 李长江,麻土华,朱兴盛.2008.降雨型滑坡预报的理论、方法及应用[M].北京:地质出版社,138-147.
[10] 李 高,谭建民,王世梅,林 旭,陈 勇,王 力,郭 飞.2021.滑坡对降雨响应的多指标监测及综合预警探析:以赣南罗坳滑坡为例[J].地学前缘,28(6):283-294.
[11] 李 坤,李 冲,邓 飞.2020.粤西金银河花岗斑岩体风化壳离子吸附型重稀土找矿进展及找矿远景分析[J].华南地质,36(2):162-168.
[12] 刘广宁,齐 信,黄长生,王芳婷.2019.粤桂合作特别试验区地质灾害发育特征及形成机理[J].华南地质与矿产,2019,35(3):361-372.
[13] 刘广宁,李 聪,卢 波,朱杰兵,王小伟,冯世国.2020.降雨诱发全-强风化岩边坡浅层失稳模型试验研究[J].长江科学院院报,37(7):88-95+104.
[14] 刘广宁,黄长生,齐信,王芳婷.2021.西江上游封开段花岗岩边坡变形破坏宏观判据研究[J].人民长江,52(1):96-101+113.
[15] 龙万学,吴 俊,傅鹤林.2008.降雨型滑坡现场模拟试验研究[J].贵州工业大学学报(自然科学版),37(3):20-23+28.
[16] 谭万沛.1991.降雨泥石流的临界降雨量研究[M].第二届全国泥石流学术会议论文集.北京:科学出版社,136-142.
[17] 王 芳,殷坤龙,桂蕾,陈丽霞.2018.不同日降雨工况下万州区滑坡灾害危险性分析[J].地质科技情报,37(1):190-195+203.
[18] 王礼先,于志民.2001.山洪及泥石流灾害预报[M].北京:中国林业出版社,148-171.
[19] 王彦华,谢先德,王春云.2000.风化花岗岩崩岗灾害的成因机理[J].山地学报,18(6):497-501.
[20] 夏梦想,李远耀,吴吉民,连志鹏,林 巍.2021.基于I-D统计模型的张家界市滑坡灾害降雨预警阀值研究[J].自然灾害学报,30(4):203-212.
[21] 张宏鑫,刘怀庆,余绍文,黄秀凤,林荣俊.2020.防城港地区地质灾害发育特征及成因机制探讨[J].华南地质,36(1):46-54.
[22] 中国科学院水利部成都山地灾害与环境研究所.2000.中国泥石流[M].北京:商务印书馆,248-268.
[23] Chen M, Shen S L, Wu H N, Wang Z F, Horpibulsuk S. 2017. Geotechnical characteristics of weathered granitic gneiss with geo-hazards investigation of pit excavation in Guangzhou, China[J]. Bulletin of Engineering Geology and the Environment, 76(2): 681-694.
[24] Dahal R K, Hasegawa S, Nonomura A,Yamanaka M, Masuda T, Nishino K. 2009. Failure characteristics of rainfall-induced shallow landslides in granitic terrains of Shikoku Island of Japan[J]. Environmental Geology, 56: 1295-1310.
[25] Hong M, Kim J, Jeong S. 2018. Rainfall intensity-duration thresholds for landslide prediction in South Korea by considering the effects of antecedent rainfall[J]. Landslides, 15: 523-534.
[26] Nara Y, Kato M, Niri R, Kohno M, Sato T, Fukuda D, Sato T Takahashi M. 2018. Permeability of Granite Including Macro-Fracture Naturally Filled with Fine-Grained Minerals[J]. Pure and Applied Geophysics, 175: 917-927.
[27] Rosi A, Peternel T, Jemec-Auflic M, Komac M, Segoni S, Casagli N. 2016.Rainfall thresholds for rainfall-induced landslides in Slovenia[J]. Landslides, 13:1571-1577.
[28] Tullis T E, Weeks J D. 1986. Constitutive behavior and stability of frictional sliding of granite[J]. Pure and Applied Geophysics, 124(3): 385-411.
[29] Wang L, Chen Y S, Wang S M, Guo F. 2022. Response of landslide deformation to rainfall based on multi-index monitoring: a case of the Tanjiawan landslide in the Three Gorges Reservoir[J]. Bulletin of Engineering Geology and the Environment, 81: 231-250.
[30] Wu L Z, Zhang L M, Zhou Y, Xu Q, Yu B, Liu G G, Bai L Y.2017. Theoretical analysis and model test for rainfall-induced shallow landslides in the red-bed area of Sichuan[J]. Bulletin of Engineering Geology and the Environment, 17: 117-125.
[31] Yang H J, Wei F Q, Ma Z F, Guo H Y, Su P C, Zhang S J. 2020. Rainfall threshold for landslide activity in Dazhou, southwest China[J]. Landslides, 17: 61-77.
-
计量
- 文章访问数: 579
- PDF下载数: 122
- 施引文献: 0