Characteristics and Petrogenesis of the Zoned Plagioclase Intrachyandesite from the Shangshu Formation, Jiangshan, Zhejiang Province
-
摘要: 火成岩中斜长石的环带结构和成分特征与岩石成因密切相关,可以反映岩浆的压力、温度、熔体成分和水含量。本文对浙江江山新元古代上墅组粗安岩中具环带结构的斜长石开展了详细的矿物学研究,以揭示蕴含的成因信息,为区域岩浆演化过程提供约束。显微镜下观察斜长石可分为斑晶和基质两种,其中斑晶可见明显环带特征,背散射电子图像显示核部多呈熔蚀的板状且较宽较暗,边部较窄较明亮,在核部与边部边界处有较多的钛铁矿微晶。电子探针分析表明斜长石核部相对富K、Na、Si,斜长石An([100×Ca/(Ca+Na)])=44~52,属于拉长石—中长石;边部相对富Ca、Al、Fe、Mg,An=54~66,属于拉长石,呈现反环带结构。显微镜下观察发现斜长石边部较窄且含有大量钛铁矿包体,反映结晶环境突变,同时斜长石核部多呈现熔蚀的板状,指示除了结晶环境的突变外,岩浆体系中还有外来富钙质岩浆的加入,因此反环带结构可能是岩浆混合的结果。区域资料显示浙江境内的上墅组主要形成于新元古代华夏与扬子两大陆块碰撞拼贴之后的陆内拉张构造背景,为一套双峰式火山岩。因此,本文研究的斜长石反环带结构可能是幔源的基性岩浆上升注入到经下地壳重熔形成的偏酸性浅部岩浆房后发生岩浆混合作用形成的。Abstract: The oscillatory zone and compositional characteristics of the plagioclase is closely related to petrogenesis, which can reflect the pressure, temperature, melt ingredients, and water content of the magma. In this paper, a detailed mineralogical study of the plagioclase with oscillatory zone in the Neoproterozoic Shangshu Formation has been carried out in order to reveal the petrogenesis and regional magmatic evolution. The plagioclase can be divided into phenocrysts and substrates under the microscope, and the phenocrysts have an obvious oscillatory zone, the core of which shows a corroded tabular with dark color in the backscattered electron image, but the edge is narrow and bright. The boundary between the core and the edge contains a large number of ilmenite microcrystals. Electron probed analysis results show that the plagioclase has a reverse zoning structure, of which the core is relatively rich in K, Na, and Si, with An ([100*Ca/(Ca+Na)]) =44~52, belonging to labradorite-andesine, while the edge is relatively rich in Ca, Al, Fe, and Mg, with An=54~66, belonging to labradorite.The reverse zoning structure of plagioclase is probably caused by magma mixing and temperature and pressure rapidly changing as the plagioclase core has a corroded tabular, but the edge is narrow and contains a high number of ilmenite inclusions, which indicate there exists the sudden crystalline environment change and external magma injection. Combined with the regional data, the Shangshu Formation is a set of bimodal volcanic rocks formed at the intracontinental tensional tectonic setting following the collision of the Cathaysia and Yangtze continents in the Neoproterozoic. It is suggested that the plagioclase with oscillatory zone is the result of magmatic mixing after the mantle-derived basic magma rises and injects into the slightly acidic shallow magma chamber, which is formed after the remelting of the lower crust.
-
-
[1] 董欢,邢长明,王焰.2017.攀西地区新街层状岩体粒间不混熔作用:来自斜长石环带结构的记录[J].大地构造与成矿学,41(2):369-380.
[2] 郭福生.2004. 江山地质概论及区域地质调查实习指导书[M].北京:地质出版社,1-112.
[3] 国家质量监督检验检疫总局.2003.中华人民共和国国家标准《硅酸盐矿物的电子探针定量分析方法GB/T15617—2002》[S].北京:中国标准出版社,1-6.
[4] 贾锦生,曹素巧,李汉明,洪汉烈,钟增球,王朝文,王浩,殷科,韩文.2016.浙西开化地区流纹岩锆石U-Pb 年代学、地球化学特征及其地质意义[J].大地构造与成矿学,40(4):772-782.
[5] 雷传扬.2021.班-怒成矿带西段阿翁错复式岩体的岩浆混合作用及动力学背景[D].成都理工大学博士学位论文.
[6] 李昌年,薛重生,廖群安,赵良政.1996.江西上饶地区发现我国首例岩浆混合杂岩体群[J].地质科技情报,15(1):6.
[7] 卢成忠,顾明光.2007.杭州南部新元古代双峰式火山岩的厘定及其构造意义[J].中国地质,34(4):565-571.
[8] 卢成忠,杨树锋,顾明光,董传万.2009.浙江次坞地区晋宁晚期双峰式岩浆杂岩带的地球化学特征:Rodinia 超大陆裂解的岩石学记录[J].岩石学报,25(1):67-76.
[9] 陆建军,章荣清,黄旭栋,张强,李晓宇,周维法,黄迪,黄玉,马东升,姜耀辉.2022.江南造山带钨锡稀有金属矿床成矿作用特征[J].华南地质,38(3):359-381.
[10] 牛漫兰, 赵齐齐, 吴齐, 李秀财, 闫臻, 李继亮, 孙毅, 苑潇宇.2018.柴北缘果可山岩体的岩浆混合作用:来自岩相学、矿物学和地球化学证据[J]. 岩石学报,34(7):1991-2016.
[11] 牛之建,刘跃,狄永军.2014.大兴安岭五岔沟地区中生代粗安岩中斜长石环带特征及其地质意义[J].岩石矿物学杂志,33(1):102-108.
[12] 谭陈诚,向轲,石少华,朱继华,陈剑锋,郑正福,林碧海.2020.南岭万洋山加里东期花岗岩地球化学特征、成因与构造意义[J].华南地质,36(2):138-146.
[13] 王剑,潘桂棠.2009.中国南方古大陆研究进展与问题评述[J].沉积学报,27(5):818-825.
[14] 王孝磊,周金城,陈昕,张凤凤,孙梓铭.2017.江南造山带的形成与演化[J].矿物岩石地球化学通报,36(5):714-735.
[15] 王玉往,王京彬,龙灵利,邹滔,唐萍芝,王莉娟.2012.岩浆混合作用的类型、标志、机制、模式及其与成矿的关系—以新疆北部为例[J].岩石学报,28(8):2317-2330.
[16] 王自强,高林志,丁孝忠,黄志忠.2012“. 江南造山带”变质基底形成的构造环境及演化特征[J]. 地质论评,58(3):401-413.
[17] 谢磊,王德滋,王汝成,邱检生,陈小明.2004.浙江普陀花岗杂岩体中的石英闪长质包体:斜长石内部复杂环带研究与岩浆混合史记录[J].岩石学报,20(6):1937-1408.
[18] 徐步台,邱郁双.1994.浙西北上墅组同位素年代地层学研究[J].地球学报,(1-2):51-59.
[19] 杨世平,祝明明,孟涛,陈浩,刘华,耿翔.2021.江南造山带中段大湖山新元古代花岗岩U-Pb 年代学、地球化学特征及其地质意义[J].资源环境与工程,35(5):559-571+579.
[20] 翟文建,赵焕,崔霄峰,何凯,翟文芳,杨俊峰,李承东.2020.北秦岭孤山坪地区辉长岩地球化学特征、锆石U-Pb 年龄及Lu-Hf 同位素组成[J].地质科技通报,39(5):127-138.
[21] 张旗,潘国强,李承东,金惟俊,贾秀勤.2007.花岗岩混合问题:与玄武岩对比的启示—关于花岗岩研究的思考之一[J].岩石学报,23(5):1141-1152.
[22] Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 78 (1-2):1-24.
[23] Bouvet De Maisonneuve C,Dungan M A, Bachmann O, Burgisser A. 2013. Petrological Insights into Shifts in Eruptive Styles at VolcánLlaima (Chile)[J]. Journal of Petrology, 54(2):393-420.
[24] Dong C W, Yang Y F, Yan Q, Zhu G Q. 2007. Characteristics and formation processes of granite landforms in Zhejiang Province[J]. Geological Review, 53(S1):132-137.
[25] Gao P, Zhao Z F, Zheng Y F. 2016. Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China[J]. Journal of Asian Earth Sciences, 123:142-161.
[26] Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X M, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J]. Earth and Planetary Science Letters, 270(1-2):41-53.
[27] Ginibre C, Wörner G, Kronz A. 2002. Minor-and trace-element zoning in plagioclase: Implications for magma chamber processes at Parinacota volcano, northern Chile[J]. Contributions to Mineralogy and Petrology, 143(3):300-315.
[28] Ginibre C, Wörner G. 2007. Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase[J]. Lithos, 98(1-4):118-140.
[29] Grove T L, Baker M B, Kinzler R J. 1984. Coupled CaAl-Na-Si diffusion in plagioclase feldspar: Experiments and applications to cooling ratespeedometry[J]. Geochimica et CosmochimicaActa, 48(10):2113-2121.
[30] Hammer J E, Rutherford M J. 2002. An experimental study of the kinetics of decompression-induced crystallization in silicic melt[J]. Journal of Geophysical Research, 107(B1):ECV 8-1-ECV 8-24.
[31] L’Heureux I, Fowler A D.1994. A nonlinear dynamical model of oscillatory zoning in plagioclase[J]. American Mineralogist, 79(9-10):885-891.
[32] Li X H, Li W X, Li Z X, Liu Y. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: a major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 102(1-2): 341-357.
[33] Nakamura M, Shimakita S. 1998. Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase[J]. Earth and Planetary Science Letters,161(1-4):119-133.
[34] Shu LS. 2020. Neoproterozoic trench-arc system in the western segment of Jiangnan orogenic belt, South China[J]. Acta Geologica Sinica (English Edition), 94(S1):49.
[35] Smith R K, Lofgren G E. 1983. An analytical and experimental study of zoning in plagioclase[J]. Lithos, 16(2):153-168.
[36] Tepley F J, Davidson J P, Tilling R I, Arth J G. 2000. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from EI Chichon Volcano,Mexico[J]. Journal of Petrology, 41(9):1397-1411.
[37] Ustunisik G, Kilinc A, Nielsen R L. 2014. New insights into the processes controlling compositional zoning in plagioclase[J]. Lithos, 200(1):80-93.
[38] Yao J L, Cawood P A, Shu L S, Santosh M, Li J Y. 2016. An early Neoproterozoic accretionary prism ophiolitic mélange from the Western Jiangnan orogenic belt, South China[J]. Journal of Geology, 124(5):587-601.
[39] Zhang H, Liu Y X, Ding X Z, Gao L Z, Yang C, Zhang J B, Gong C Q, Liu H G. 2020. Geochronology, Geochemistry, Whole Rock Sr-Nd and Zircon Hf-O Isotopes of the Early Neoproterozoic Volcanic Rocks in Jiangshan, Eastern Part of the Jiangnan Orogen: Constraints on Petrogenesis and Tectonic Implications[J]. Acta Geologica Sinic(English Edition), 94(4):1117-1137.
[40] Zhang Y Y, Zhong F J, Liu J G, Qi J M, Pan J Y, Xia F, Li H D. 2022. Genesis of the Mianhuakeng uranium deposit, South China: Constraints from in-situ sulfur isotopes and trace elements of pyrite[J]. Applied Geochemistry, 140: 105-302.
[41] Zhao Z B, Xu Z Q, Ma X X, Liang F H, Guo P. 2018. Neoproterozoic-Early Paleozoic tectonic evolution of the South China Craton: New Insights from the polyphase deformation in the southwestern Jiangnan Orogen[J]. Acta Geologica Sinica (English Edition), 92(5):1700-1727.
[42] Zheng Y F, Wu R X, Wu Y B, Zhang S B, Yuan H L, Wu F Y. 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 163(3-4):351-383.
-
计量
- 文章访问数: 874
- PDF下载数: 94
- 施引文献: 0