中国自然资源航空物探遥感中心主办
地质出版社出版

2002—2020年秦岭—黄淮平原交界带植被物候特征遥感监测分析

王雅婷, 朱长明, 张涛, 张新, 石智宇. 2022. 2002—2020年秦岭—黄淮平原交界带植被物候特征遥感监测分析. 自然资源遥感, 34(4): 225-234. doi: 10.6046/zrzyyg.2021400
引用本文: 王雅婷, 朱长明, 张涛, 张新, 石智宇. 2022. 2002—2020年秦岭—黄淮平原交界带植被物候特征遥感监测分析. 自然资源遥感, 34(4): 225-234. doi: 10.6046/zrzyyg.2021400
WANG Yating, ZHU Changming, ZHANG Tao, ZHANG Xin, SHI Zhiyu. 2022. Remote sensing monitoring and analysis of the vegetation phenological characteristics of the Qinling Mountains-Huanghuai Plain ecotone from 2002 to 2020. Remote Sensing for Natural Resources, 34(4): 225-234. doi: 10.6046/zrzyyg.2021400
Citation: WANG Yating, ZHU Changming, ZHANG Tao, ZHANG Xin, SHI Zhiyu. 2022. Remote sensing monitoring and analysis of the vegetation phenological characteristics of the Qinling Mountains-Huanghuai Plain ecotone from 2002 to 2020. Remote Sensing for Natural Resources, 34(4): 225-234. doi: 10.6046/zrzyyg.2021400

2002—2020年秦岭—黄淮平原交界带植被物候特征遥感监测分析

  • 基金项目:

    国家重点研发计划重点专项项目“北斗智能精准定位技术集成及区域服务业创新示范”(2021YFB1407004)

    科技基础性工作专项计划项目“大别山地区生态修复支撑调查”(DD20208074)

    农业产业数字化地图项目(21C00346)

    江苏师范大学研究生科研与实践创新计划校级项目“2000—2020年秦淮交错带植被物候变化分析”(2021XKT0084)

详细信息
    作者简介: 王雅婷(1998-),女,硕士研究生,研究方向为生态环境遥感、植被物候对全球变化的响应等。Email: wangyatingQYZ@163.com
  • 中图分类号: TP79;Q948;X17

Remote sensing monitoring and analysis of the vegetation phenological characteristics of the Qinling Mountains-Huanghuai Plain ecotone from 2002 to 2020

  • 针对植被物候对全球变化的响应存在非线性、区域差异性以及秦岭南北气候典型差异性,选取秦岭—黄淮平原交界带为研究区,利用2002—2020年MOD09Q1遥感数据,通过自适应动态阈值法提取秦岭—黄淮平原交界带物候特征关键参数,详细刻画区域植被物候时空变化过程,分析时空分异特征,并结合气温数据探究区域植被物候对气候变化的响应。研究结果表明: ①秦淮交界带植被物候特征空间分异明显,森林植被物候始期和末期均晚于农田植被,森林植被物候始期为第67—116天,末期为第280—340天; 农田植被物候始期位于第49—92天,末期为第195—328天; 森林植被生长期长度为215~262 d,农田植被为147~261 d; 且森林植被物候受到海拔影响,海拔越高物候始期越晚、物候末期越早。②2002—2020年秦淮交界带植被物候始期和物候末期时间总体呈现提前的变化趋势、生长期长度变短; 森林和农田的物候始期变化趋势分别为: -0.14 d·a-1和0.1 d·a-1,末期变化趋势分别为-0.78 d·a-1和-1.43 d·a-1。③秦淮交界带地区物候变化特征与区域气温(3月与9月气温)显著相关,根据现有站点观测数据分析表明气温上升导致了区域的物候期提前。
  • 加载中
  • [1]

    Parmesan C, Gary Y. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003, 421(6918):37-42.

    [2]

    Ge Q S, Wang H J, Rutishauser T, et al. Phenological response to climate change in China:A meta-analysis[J]. Global Change Biology, 2015, 21(1):265-274.

    [3]

    代武君, 金慧颖, 张玉红, 等. 植物物候学研究进展[J]. 生态学报, 2020, 40(19):6705-6719.

    [4]

    Dai W J, Jin H Y, Zhang Y H, et al. Advances in plant phenology[J]. Acta Ecologica Sinica, 2020, 40(19):6705-6719.

    [5]

    Walkovszky A. Changes in phenology of the locust tree (Robinia pseudoacacia L.) in Hungary[J]. International Journal of Biometeorology, 1998, 41(4):155-160.

    [6]

    Sparks T H, Jeffree E P, Jeffree C E. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK[J]. International Journal of Biometeorology, 2000, 44(2):82-87.

    [7]

    Tucker C J, Slayback D A, Pinzon J E, et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999[J]. International Journal of Biometeorolo-gy, 2001, 45(4):184-190.

    [8]

    郑景云, 葛全胜, 郝志新. 气候增暖对我国近40年植物物候变化的影响[J]. 科学通报, 2002 (20):1582-1587.

    [9]

    Zheng J Y, Ge Q S, Hao Z X. Effects of global warming on plant phenological changes for the last 40 years in China[J]Chinese Science Bulletin, 2002 (20):1582-1587.

    [10]

    Maignan F, Bréon F M, Bacour C, et al. Interannual vegetation phenology estimates from global AVHRR measurements[J]. Remote Sensing of Environment, 2008, 112(2):496-505.

    [11]

    范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3):304-319.

    [12]

    Fan D Q, Zhao X S, Zhu W Q, et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Progress in Geography, 2016, 35(3):304-319.

    [13]

    Wu X C, Liu H Y. Consistent shifts in spring vegetation green-up date across temperate biomes in China,1982—2006[J]. Global Change Biology, 2013, 19(3):870-880.

    [14]

    刘玲玲, 刘良云, 胡勇. 1982—2006年欧亚大陆植被生长季开始时间遥感监测分析[J]. 地理科学进展, 2012, 31(11):1433-1442.

    [15]

    Liu L L, Liu L Y, Hu Y. Assessment and intercomparison of satellite-derived start-of-season (SOS) measures in Eurasia for 1982—2006[J]. Progress in Geography, 2012, 31(11):1433-1442.

    [16]

    Ge Q S, Dai J H, Cui H J, et al. Spatiotemporal variability in start and end of growing season in China related to climate variability[J]. Remote Sensing, 2016, 8(5):433.

    [17]

    高洪文. 生态交错带(Ecotone)理论研究进展[J]. 生态学杂志, 1994, 13(1):32-38.

    [18]

    Gao H W. Advancement of theoretical research in Ecotone[J]. Chinese Journal of Ecology, 1994, 13(1):32-38.

    [19]

    朱芬萌, 安树青, 关保华, 等. 生态交错带及其研究进展[J]. 生态学报, 2007(7):3032-3042.

    [20]

    Zhu F M, An S Q, Guan B H, et al. A review of ecotone:Concepts,attributes,theories and research advances[J]. Acta Ecological Sinica, 2007(7):3032-3042.

    [21]

    高翔, 白红英, 张善红, 等. 1959—2009年秦岭山地气候变化趋势研究[J]. 水土保持通报, 2012, 32(1):207-211.

    [22]

    Gao X, Bai H Y, Zhang S H, et al. Climatic change tendency in Qinling Mountains from 1959 to 2009[J]. Bulletin of Soil and Water Conservation, 2012, 32(1):207-211.

    [23]

    邓晨晖, 白红英, 马新萍, 等. 2000—2017年秦岭山地植被物候变化特征及其南北差异[J]. 生态学报, 2021, 41(3):1068-1080.

    [24]

    Deng C H, Bai H Y, Ma X P, et al. Variation characteristics and its north-south differences of the vegetation phenology by remote sensing monitoring in the Qinling Mountains during 2000—2017[J]. Acta Ecologica Sinica, 2021, 41(3):1068-1080.

    [25]

    邓晨晖, 白红英, 高山, 等. 1964—2015年气候因子对秦岭地区植物物候的综合影响效应[J]. 地理学报, 2018, 73(5):917-931.

    [26]

    Deng C H, Bai H Y, Gao S, et al. Comprehensive effect of climatic factors on plant phenology in Qinling Mountains region during 1964—2015[J]. Acta Geographica Sinica, 2018, 73(5):917-931.

    [27]

    马新萍, 白红英, 贺映娜, 等. 基于NDVI的秦岭山地植被遥感物候及其与气温的响应关系——以陕西境内为例[J]. 地理科学, 2015, 35(12):1616-1621.

    [28]

    Ma X P, Bai H Y, He Y N, et al. The vegetation remote sensing phenology of Qinling Mountains based on NDVI and it’s response to temperature:Taking within the territory of Shaanxi as an example[J]. Scientia Geographica Sinica, 2015, 35(12):1616-1621.

    [29]

    夏浩铭, 李爱农, 赵伟, 等. 2001—2010年秦岭森林物候时空变化遥感监测[J]. 地理科学进展, 2015, 34(10):1297-1305.

    [30]

    Xia H M, Li A N, Zhao W, et al. Spatiotemporal variations of forest phenology in the Qinling zone based on remote sensing monitoring,2001—2010[J]. Progress in Geography, 2015, 34(10):1297-1305.

    [31]

    郭少壮, 白红英, 黄晓月, 等. 秦岭太白红杉林遥感物候提取及对气候变化的响应[J]. 生态学杂志, 2019, 38(4):1123-1132.

    [32]

    Guo S Z, Bai H Y, Huang X Y, et al. Remote sensing phenology of Larix chinensis forest in response to climate change in Qinling Mountains[J]. Chinese Journal of Ecology, 2019, 38(4):1123-1132.

    [33]

    李建豪, 陶建斌, 程波, 等. 秦岭山区植被春季物候的海拔敏感性[J]. 应用生态学报, 2021, 32(6):2089-2097.

    [34]

    Li J H, Tao J B, Cheng B, et al. Sensitivity of spring phenology to elevation in Qinling Mountains,China[J]. Chinese Journal of Applied Ecology, 2021, 32(6):2089-2097.

    [35]

    钟兆站, 李克煌. 秦岭—黄淮平原交界带气候边际效应初探[J]. 地理研究, 1996, 15(4):66-73.

    [36]

    Zhong Z Z, Li K H. A primary study on the climatic boundary effect of the join zone between Qinling Mountain and Huanghuai Plain[J]. Geographical Research, 1996, 15(4):66-73.

    [37]

    管华, 马建华. 秦岭—黄淮平原交界带土壤物质强淋溶效应分析[J]. 地域研究与开发, 2008, 27(3):117-120.

    [38]

    Guan H, Ma J H. Analysis of soil matrial strong leaching effect in the transitional region of Qinling Mountains and Huang-Huai Plain[J]. Areal Research and Development, 2008, 27(3):117-120.

    [39]

    何太蓉, 庄红娟, 刘存东. 秦岭—黄淮平原交界带中东部近50年气候变化特征与趋势[J]. 安徽农业科学, 2009, 37(14):6532-6534.

    [40]

    He T R, Zhuang H J, Liu C D. Charateristics and trend of climatic change in the east of transitional region between Qinling Mountains and Huanghuai Plain in resent 50 years[J]. Journal of Anhui Agricultural Sciences, 2009, 37(14):6532-6534.

    [41]

    王正兴, 刘闯, Huete A. 植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J]. 生态学报, 2003, 23(5):979-987.

    [42]

    Wang Z X, Liu C, Huete A. From AVHRR-NDVI to MODIS-EVI advances in vegetation index research[J]. Acta Ecologica Sinica, 2003, 23(5):979-987.

    [43]

    项铭涛, 卫炜, 吴文斌. 植被物候参数遥感提取研究进展评述[J]. 中国农业信息, 2018, 30(1):55-66.

    [44]

    Xiang M T, Wei W, Wu W B. Review of vegetation phenology estimation by using remote sensing[J]. China Agricultural Informatics, 2018, 30(1):55-66.

    [45]

    何月, 樊高峰, 张小伟, 等. 浙江省植被物候变化及其对气候变化的响应[J]. 自然资源学报, 2013, 28(2):220-233.

    [46]

    He Y, Fan G F, Zhan X W, et al. Vegetation phenological variation and its response to climate changes in Zhejiang Province[J]. Journal of Natural Resources, 2013, 28(2):220-233.

    [47]

    李净, 刘红兵, 李彩云, 等. 基于GIMMS 3g NDVI的近30年中国北部植被生长季始期变化研究[J]. 地理科学, 2017, 37(4):620-629.

    [48]

    Li J, Liu H B, Li C Y, et al. Changes of green-up day of vegetation growing season based on GIMMS 3g NDVI in Northern China in recent 30 years[J]. Scientia Geographica Sinica, 2017, 37(4):620-629.

    [49]

    宋春桥, 游松财, 柯灵红, 等. 藏北高原典型植被样区物候变化及其对气候变化的响应[J]. 生态学报, 2012, 32(4):1045-1055.

    [50]

    Song C Q, You S C, Ke L H, et al. Phenological variation of typical vegetation types in northern Tibet and its response to climate changes[J]. Acta Ecologica Sinica, 2012, 32(4):1045-1055.

    [51]

    李正国, 唐华俊, 杨鹏, 等. 植被物候特征的遥感提取与农业应用综述[J]. 中国农业资源与区划, 2012, 33(5):20-28.

    [52]

    Li Z G, Tang H J, Yang P, et al. Progress in remote sensing of vegetation phenology and its application in agriculture[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(5):20-28.

    [53]

    J?nsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1824-1832.

    [54]

    武永峰, 何春阳, 马瑛, 等. 基于计算机模拟的植物返青期遥感监测方法比较研究[J]. 地球科学进展, 2005, 20(7):724-731.

    [55]

    Wu Y F, He C Y, Ma Y, et al. The comparison of the current remote sensing - based vegetation greenup detection methods with the computer simulation[J]. Advances in Earth Science, 2005, 20(7):724-731.

    [56]

    李铮, 柏延臣, 何亚倩. 遥感叶面积指数产品提取自然植被物候期对比[J]. 遥感技术与应用, 2015, 30(6):1103-1112.

    [57]

    Li Z, Bo Y C, He Y Q. Comparison of natural vegetation phenology metrics from remote sensing LAI products[J]. Romte Sensing Technology and Application, 2015, 30(6):1103-1112.

    [58]

    侯学会, 隋学艳, 梁守真, 等. 几种物候提取方法的小麦物候提取[J]. 遥感信息, 2017, 32(6):65-70.

    [59]

    Hou X H, Sui X Y, Liang S Z, et al. Comparison of five methods for phenology extraction of winter wheat[J]. Remote Sensing Information, 2017, 32(6):65-70.

    [60]

    吴文斌, 杨鹏, 唐华俊, 等. 基于NDVI数据的华北地区耕地物候空间格局[J]. 中国农业科学, 2009, 42(2):552-560.

    [61]

    Wu W B, Yang P, Tang H J, et al. Monitoring spatial patterns of cropland phenology in North China based on NOAA NDVI data[J]. Scientia Agricultura Sinica, 2009, 42(2):552-560.

    [62]

    于信芳, 庄大方. 基于MODIS NDVI数据的东北森林物候期监测[J]. 资源科学, 2006(4):111-117.

    [63]

    Yu X F, Zhuang D F. Monitoring forest phenophases of northeast China based on MODIS NDVI data[J]. Resources Science, 2006 (4):111-117.

    [64]

    宋怡, 马明国. 基于GIMMS_AVHRR_NDVI数据的中国寒旱区植被动态及其与气候因子的关系[J]. 遥感学报, 2008, 12(3):499-505.

    [65]

    Song Y, Ma M G. Variation of AVHRR NDVI and its relationship with climate in Chinese arid and cold regions[J]. Journal of Remote Sensing, 2008, 12(3):499-505.

    [66]

    李登科, 王钊. 基于MCD12Q2的秦岭植被物候时空变化及对气候的响应[J]. 生态环境学报, 2020, 29(1):11-22.

    [67]

    Li D K, Wang Z. Spatiotemporal variation of vegetation phenology and its response to climate in Qinling Mountains based on MCD12Q2[J]. Ecology and Environmental Sciences, 2020, 29(1):11-22.

    [68]

    李丹, 吴秀芹, 张靖宙, 等. 西南喀斯特断陷盆地植被物候动态变化及其与气候因子的响应[J]. 水土保持研究, 2020, 27(6):168-173.

    [69]

    Li D, Wu X Q, Zhang J Z, et al. Vegetation phenology change and response to climate change in the Karst faulted basin of Southwest China[J]. Research of Soil and Water Conservation, 2020, 27(6):168-173.

    [70]

    陈丽, 杨秋萍, 徐长春, 等. 2001—2017年开都—孔雀河流域植被物候特征及其对气候变化的响应[J]. 干旱区研究, 2020, 37(3):729-738.

    [71]

    Chen L, Yang Q P, Xu C C, et al. Phenological characteristics of vegetation and its response to climatic change in the Kaidu—Kongqi River basin,Xinjiang,during 2001—2017[J]. Arid Zone Research, 2020, 37(3):729-738.

    [72]

    李叶, 张艳红, 陈子琦, 等. 中高纬度山区气温空间化的方法比较研究——以大兴安岭北麓为例[J]. 山地学报, 2021, 39(2):174-182.

    [73]

    Li Y, Zhang Y H, Chen Z Q, et al. Comparative study on spatialization methods of air temperature in middle and high latitude mountainous areas:A case study of northern foot of the Daxing’anling Mountains[J]. Mountain Research, 2021, 39(2):174-182.

    [74]

    张晓东, 朱文博, 张静静, 等. 伏牛山地森林植被物候及其对气候变化的响应[J]. 地理学报, 2018, 73(1):41-53.

    [75]

    Zhang X D, Zhu W B, Zhang J J, et al. Phenology of forest vegetation and its response to climate change in the Funiu Mountains[J]. Acta Geographica Sinica, 2018, 73(1):41-53.

    [76]

    侯学会, 隋学艳, 姚慧敏, 等. 中国北方麦区冬小麦物候期对气候变化的响应[J]. 麦类作物学报, 2019, 39(2):202-209.

    [77]

    Hou X H, Sui X Y, Yao H M, et al. Response of winter phenology to climate in northern China[J]. Journal of Triticeae Crop, 2019, 39(2):202-209.

    [78]

    崔耀平, 肖登攀, 刘素洁, 等. 中国夏玉米和冬小麦近年生育期变化及其与气候的关系[J]. 中国生态农业学报, 2018, 26(3):388-396.

    [79]

    Cui Y P, Xiao D P, Liu S J, et al. Growth periods variation of summer maize and winter wheat and their correlations with hydrothermal conditions in recent years in China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3):388-396.

    [80]

    孙新素, 龙致炜, 宋广鹏, 等. 气候变化对黄淮海地区夏玉米-冬小麦种植模式和产量的影响[J]. 中国农业科学, 2017, 50(13):2476-2487.

    [81]

    Sun X S, Long Z W, Song G P, et al. Effects of climate change on cropping pattern and yield of summer maize-winter wheat in Huang-Huai-Hai Plain[J]. Scientia Agricultura Sinica, 2017, 50(13):2476-2487.

  • 加载中
计量
  • 文章访问数:  730
  • PDF下载数:  110
  • 施引文献:  0
出版历程
收稿日期:  2021-11-22
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录