-
摘要:
研究了化学沉淀法合成的羟基磷灰石对水溶液中铅离子的吸附性能及机理。运用SEM电镜、EDS、XRD等手段对羟基磷灰石(HAP)的结构形貌进行分析。结果显示除铅的反应机理在pH=3时主要为溶解沉淀和离子交换,在pH=5时为溶解沉淀和水解沉淀。除铅效果与溶液的pH值、反应温度呈正相关,与溶液初始铅离子浓度呈负相关;pH=4时,铅离子去除率接近99%,同时水溶液中铅离子浓度可降至规定的排放标准(1 mg/L)以下。
Abstract:Lead ions were removed by using HAP prepared by chemical precipitation method. Morphology of Hydroxyapatite (HAP) was observed by SEM, EDS and XRD. The results showed that the reaction mechanism of lead removal was mainly precipitation and ion exchange at pH=3, and precipitation and hydrolysis at pH=5. The removal rate of lead was positively correlated with pH value and reaction temperature of the solution, negatively correlated with the initial lead ion concentration of the solution, and the reaction process was a complicated multistage reaction. When pH=4, the removal rate of lead ions is close to 99%, while the lead ions in aqueous solution drop below the prescribed emission standard (1 mg / L).
-
-
表 1 不同研究合成吸附Pb2+材料的性能及特性
Table 1. properties and properties of adsorbed Pb2+ materials in different studies
Adsorbent pH BET surface area/(m2·g-1) Grain size T /℃ Capacity/(mg·g-1) Reference Porous HAP 5 20-25 40-100 nm 25 99.5 This study SS-HAP/C 5 28.44 <0.149 mm 25 170-300 [10] Activated carbon derived from sugarcane bagasse 5 — 0.15 mm 26 23.4 [16] Activated carbon prepared from phaseolus aureus hulls 6 325 — 30 21.8 [17] Natural hydroxyapatite 5.6 4.49 0.2 mm 25 82.88 [18] Nano hydroxyapatite — — 50-250 nm 25 83-138 [19] Hydroxyapatite/zeolite nanocomposite 5 35.62 40-70 nm 25 55.55 [20] -
[1] Bi Y G, Liu D, Liu X M, et al. Preparation and characterization of nano-hydroxyapatite and its adsorption behavior toward copper ions[J]. Nanoscience & Nanotechnology Letters, 2017, 9(5):810-816. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd8898e3c4c01f6a5f0d76cc67fb815d
[2] Tang S Y, Dong H X, Zhao M L, et al. Effects of hydroxyapatite on absorption and transfer of Pb and Cd in soil-rice system[J]. Journal of Agro-Environment Science, 2016(2):266-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201602009
[3] Yang L, Wei Z, Zhong W, et al. Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu2+ from aqueous solution[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 490:9-21.
[4] Liu Y, Yan Y, Seshadri B, et al. Immobilization of lead and copper in aqueous solution and soil using hydroxyapatite derived from flue gas desulphurization gypsum[J]. Journal of Geochemical Exploration, 2016, 184:239-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e70b050bfea0b8b260810a251d18491d
[5] Liu D M, Troczynski T, Tseng W J. Water-based sol-gel synthesis of hydroxyapatite:process development[J]. Biomaterials, 2001, 22(13):1721-1730. doi: 10.1016/S0142-9612(00)00332-X
[6] Mobasherpour I, Heshajin M S, Kazemzadeh A, et al. Synthesis of nanocrystalline hydroxyapatite by using precipitation method[J]. Journal of Alloys & Compounds, 2007, 430(1):330-333. https://www.sciencedirect.com/science/article/pii/S0272884212013065
[7] Earl J S, Wood D J, Milne S J. Hydrothermal synthesis of hydroxyapatite[J]. Journal of Physics:Conference Series, 2006, 26:268-271. doi: 10.1088/1742-6596/26/1/064
[8] Makihara T, Sakane M, Noguchi H, et al. Formation of osteon-like structures in unidirectional porous hydroxyapatite substitute[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2018, 106(7):2665-2672. doi: 10.1002/jbm.b.34083
[9] Sharma R, Singh R, Penna R, et al. Investigations for mechanical properties of Hap, PVC and PP based 3D porous structures obtained through biocompatible FDM filaments[J]. Composites Part B Engineering, 2018, 132:237-243. doi: 10.1016/j.compositesb.2017.08.021
[10] Zhu Y, Jiang Y, Zhu Z, et al. Preparation of a porous hydroxyapatite-carbon composite with the bio-template of sugarcane top stems and its use for the Pb2+ removal[J]. Journal of Cleaner Production, 2018, 187:650-661. doi: 10.1016/j.jclepro.2018.03.275
[11] 胥焕岩, 刘羽, 彭明生.羟基磷灰石的除铅行为及作用机理研究[J].矿物岩石地球化学通报, 2007, 26(z1):128-130. doi: 10.3969/j.issn.1007-2802.2007.z1.074
[12] 黄远, 李彦秋, 何芳, 等.羟基磷灰石溶解机理的研究[J].临床口腔医学杂志, 2012, 28(6):328-332. doi: 10.3969/j.issn.1003-1634.2012.06.004
[13] 胡田田, 仓龙, 王玉军, 等.铅和铜离子在纳米羟基磷灰石上的竞争吸附动力学研究[J].环境科学, 2012, 33(8):2875-2881. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201208052
[14] Hao L, Lv Y, Song H. The morphological evolution of hydroxyapatite on high-efficiency Pb2+, removal and antibacterial activity[J]. Microchemical Journal, 2017, 135:16-25. doi: 10.1016/j.microc.2017.07.008
[15] 刘威, 钱功明, 郑丽, 等.结构可调控纳米羟基磷灰石的制备研究[J].人工晶体学报, 2016, 45(1):146-150. doi: 10.3969/j.issn.1000-985X.2016.01.025
[16] Salihi I U, Kutty S R M, Isa M H. Adsorption of Lead ions onto Activated Carbon derived from Sugarcane bagasse[J]. Materials Science and Engineering, 2017, 201:11-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9344951
[17] Rao M M, Ramana D K, Seshaiah K, et al. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls[J]. Journal of Hazardous Materials, 2009, 166(2):1006-1013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=001495297f054abd8f61765a094461ec
[18] Kaludjerovicradoicic T, Raicevic S. Aqueous Pb sorption by synthetic and natural apatite:kinetics, equilibrium and thermodynamic studies[J]. Chemical Engineering Journal, 2010, 160(2):503-510. https://www.sciencedirect.com/science/article/pii/S1385894710002974
[19] Fernando M S, Silva R M D, Silva K M N D. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions[J]. Applied Surface Science, 2015, 351:95-103. doi: 10.1016/j.apsusc.2015.05.092
[20] Zendehdel M, Shoshtari-Yeganeh B, Cruciani G. Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization[J]. Journal of the Iranian Chemical Society, 2016, 13(10):1915-1930. doi: 10.1007/s13738-016-0908-9
[21] Vila M, Sánchez-Salcedo S, Vallet-Regí M. Hydroxyapatite foams for the immobilization of heavy metals:From waters to the human body[J]. Inorganica Chimica Acta, 2012, 393(12):24-35.
[22] T. Suzuki, T. Hatsushika, M. Miyake. Synthetic hydroxyapatites as inorganic cation-exchangers; exchange characteristics for Pb2+ and Sn2+ ions in acidic solution[J]. Phosphorus Sulfur & Silicon & the Related Elements, 2009, 51(51):435-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10426509008040959
[23] Mavropoulos E, Rossi A M, Costa, Andréa M, et al. Studies on the mechanisms of lead immobilization by hydroxyapatite[J]. Environmental Science & Technology, 2002, 36(7):1625-1629. https://www.sciencedirect.com/science/article/pii/S1044580304001688
-