81Kr: A NEW METHOD OF PALEOGROUNDWATER DATING
-
摘要:
由于81Kr化学性质稳定、半衰期长且在地下水运移过程中没有额外来源的优点,近年来,成为测定古老地下水年龄(105~106 a)的有效手段.国外对于81Kr的测定方法、地下水定年应用研究已较为深入,而国内应用81Kr作为水文地质学的研究尚处于起步阶段.本文通过对国内外81Kr应用于地下水测年的原理以及81Kr的测定方法进行总结,针对目前研究的问题进行探讨,并对今后放射性氪核素在水文地球化学中的研究进行展望,为国内对于81Kr的测定与在古地下水定年研究方面提供科学依据.
Abstract:Due to its advantages such as stable chemical property, long half-life and no extra sources during groundwater migration, 81Kr has recently become an effective method to determine the age of paleogroundwater (105-106 a). The overseas researches on determination of 81Kr and groundwater dating are relatively mature, yet related domestic studies are still at the beginning stage. This paper summarizes the principles of 81Kr in groundwater dating and extraction method, discusses the problems in current research, and makes prospects for the studies of radioactive Kr nuclide in hydrogeochemistry, which provides scientific basis for the researches at home.
-
Key words:
- 81Kr /
- groundwater dating /
- radionuclide /
- hydrogeology
-
-
[1] Cook P G, Herczeg A L. Environmental tracers in subsurface hydrology[M]. Springer US, 2000:397-424.
[2] Collon P, Kutschera W, Loosli H H, et al. 81Kr in the Great Artesian Basin, Australia:A new method for dating very old groundwater[J]. Earth&Planetary Science Letters, 2000, 182(1):103-113. https://www.sciencedirect.com/science/article/pii/S0012821X0000234X
[3] Loosli H H, Oeschger H. 37Ar and 81Kr in the atmosphere[J]. Earth&Planetary Science Letters, 1969, 7(1):67-71. https://www.onacademic.com/detail/journal_1000035233118310_d4f2.html
[4] Aggarwal P K, Gat J R, Froehlich K F. Isotopes in the Water Cycle:Past, present and future of a developing science[J]. Springer-Verlag GmbH, 2005:91-95. https://www.researchgate.net/publication/253012840_Isotopes_in_the_Water_Cycle_Past_Present_and_Future_of_a_Developing_Science
[5] Momoshima N, Inoue F, Sugihara S, et al. An improved method for 85Kr analysis by liquid scintillation counting and its application to atmospheric 85Kr determination[J]. Journal of Environmental Radioactivity, 2010, 101(8):615. doi: 10.1016/j.jenvrad.2010.03.009
[6] Collon P, Antaya T, Davids B, et al. Measurement of 81Kr in the atmosphere[J]. Nuclear Instruments & Methods in Physics Research, 1997, 123(1/4):122-127. https://www.onacademic.com/detail/journal_1000035113541210_cb1e.html
[7] Lehmann B E, Love A, Purtschert R, et al. A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia[J]. Earth & Planetary Science Letters, 2003, 211(3/4):237-250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78383ec4b3983d5f99a1ac17e3bff7c0
[8] Chen C Y, Li Y M, Bailey K, et al. Ultrasensitive isotope trace analyses with a magneto-optical trap[J]. Science, 1999, 286(5442):1139-1141. doi: 10.1126/science.286.5442.1139
[9] Du X, Purtschert R, Bailey K, et al. A new method of measuring 81Kr and 85Kr abundances in environmental samples[J]. Geophysical Research Letters, 2003, 30(20):2068. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2003GL018293
[10] Sturchio N C, Du X, Purtschert R, et al. One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36[J]. Geophysical Research Letters, 2004, 31(5):179-211. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_physics%2f0402092
[11] Jiang W, Bailey K, Lu Z T, et al. An atom counter for measuring 81Kr and 85Kr in environmental samples[J]. Geochimica et Cosmochimica Acta, 2012, 91(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=82dacd4b96559450d602be2000208b2f
[12] Sidle W C. Apparent 85Kr ages of groundwater within the Royal watershed, Maine, USA[J]. Journal of Environmental Radioactivity, 2006, 91(3):113-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=61e3efe84af7f19d9fcfc57362cb03d9
[13] Ozima M, Podosek F A. Noble gas geochemistry[M]. Cambridge:Cambridge University Press, 1983, 367.
[14] Mamyrin B A, Anufriev G S, Kamenskii I L, et al. Determination of the isotopic composition of atmospheric helium[J]. Geochemistry International, 1970, 7(4):465-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/rcm.8309
[15] Oliver B M, Bradley J G, Harry Farrar I V. Helium concentration in the Earth's lower atmosphere[J]. Geochimica et Cosmochimica Acta, 1984, 48(9):1759-1767. doi: 10.1016/0016-7037(84)90030-9
[16] Verniani F. The total mass of the Earth's atmosphere[J]. Journal of Geophysical Research, 1966, 71(2):385-391. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1103.2953
[17] Kutschera W, Paul M, Ahmad I, et al. Long-lived noble gas radionuclides[J]. Nuclear Instruments & Methods in Physics Research, 1994, 92(1):241-248. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024669684/
[18] Beňo J B, Masarik J M. Numerical simulations of 81Kr production rates[J]. Meteoritics&planetary Science Supplement, 2013, 76. https://www.hou.usra.edu/meetings/metsoc2013/pdf/5064.pdf
[19] Baglin C M. Nuclear data sheets for A=81[J]. Nuclear Data Sheets, 2008, 109(10):2257-2437. doi: 10.1016/j.nds.2008.09.001
[20] Florkowski T. Natural production of radionuclides in geological formations[J]. Journal of Physics G:Nuclear & Particle Physics, 1991, 17(1):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c4cd145e7f7488d1ec1df5b86d110dc
[21] Buizert C, Baggenstos D, Jiang W, et al. Radiometric 81Kr dating identifies 120, 000-year-old ice at Taylor Glacier, Antarctica[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19):6876-81. doi: 10.1073/pnas.1320329111
[22] Collon P, Cole D, Davids B, et al. Measurement of the long-lived radionuclide 81Kr in pre-nuclear and present-day atmospheric krypton[J]. Radiochimica Acta, 1999, 85(1/2):13-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1524/ract.1999.85.12.13
[23] Lehmann B E, Loosli H H, Rauber D, et al. 81Kr and 85Kr in groundwater, Milk River aquifer, Alberta, Canada[J]. Applied Geochemistry, 1991, 6(4):419-423. https://www.sciencedirect.com/science/article/pii/088329279190041M
[24] Aggarwal P K, Matsumoto T, Sturchio N C, et al. Continental degassing of 4He by surficial discharge of deep groundwater[J]. Nature Geoscience, 2015, 8(1):35-39. doi: 10.1038/ngeo2302
[25] 涂乐义.地下水溶解氪气分析用于放射性氪同位素测年[D].合肥: 中国科学技术大学, 2015.
http://cdmd.cnki.com.cn/Article/CDMD-10358-1015723048.htm [26] LI Jie, PANG Zhong-he, YANG Guo-Min, et al. Million-year-old groundwater revealed by krypton-81 dating in Guanzhong Basin, China[J]. Science Bulletin, 2017(17):1181-1184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb-e201717008
[27] Matsumoto T, Chen Z, Wei W, et al. Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain[J]. Earth & Planetary Science Letters, 2018, 493:208-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a125f9207a7082044f0373894d5b4289
[28] Sturchio N C, Kuhlman K L, Yokochi R, et al. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico[J]. Journal of Contaminant Hydrology, 2014, 160(3):12-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80c3b600acce6e4bc69ec5def4d00bb8
[29] Gerber C, Vaikmäe R, Aeschbach W, et al. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale[J]. Geochimica et Cosmochimica Acta, 2017, 205:187-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e37fd5d308c65544204886b9aa942a2
-