Multipurpose Utilization Trend of Nickel Mineral Resources under the Goal of Carbon Peaking and Carbon Neutrality
-
摘要:
人类面临气候变化的挑战日益严重,“暖战”已在全球范围内打响。我国“双碳”目标提出后,各行业部门纷纷研究制定各自的减排方案。金属矿产行业作为国民经济的重要基础产业,在绿色低碳转型中的挑战和机遇并存。本文重点研究了动力电池重要金属之一的镍,在能源清洁化和动力电池高镍化双重驱动下的综合应用前景。现阶段主要用于不锈钢生产的镍将在绿色低碳转型中逐渐减少,电池级硫酸镍的消费量将快速增长。随着硫化镍矿资源日渐贫乏,红土型镍矿已成为镍的主要来源。目前红土型镍矿主要通过回转窑-电炉等火法冶炼工艺生产镍铁和不锈钢,随着电池级硫酸镍的需求增加,高压酸浸镍湿法冶炼中间品和镍铁转产高冰镍制备硫酸镍或将成为未来红土型镍矿综合利用的发展趋势。
Abstract:The challenge of climate change is becoming more and more serious, and the "warm war" has been launched around the world. After China's "dual carbon" target was put forward, various sectors have studied and developed their own emission reduction plans. As an important basic industry of national economy, metal mineral industry faces both challenges and opportunities in green and low-carbon transformation. This paper focuses on nickel, one of the most important metals in power battery, and its comprehensive application prospect under the dual drive of clean energy and high nickelization of power battery. At present, nickel mainly used in stainless steel production will gradually decrease in the green and low-carbon transition, and the consumption of battery grade nickel sulfate will increase rapidly. Laterite type nickel ore has become the main source of nickel as nickel sulfide ore resources become scarce. At present, laterite nickel ore is mainly produced by KREF and other pyrosmelting processes to produce nickel-iron and stainless steel. With the increasing demand for battery grade nickel sulfate, high pressure acid leaching nickel wet smelting of intermediate products and converting nickel-iron to high matte nickel to produce nickel sulfate may become the development trend of comprehensive utilization of laterite nickel ore in the future.
-
-
表 1 能源技术领域矿产品需求量预测[15]
Table 1. Mineral demand forecast in energy technology field
矿产品 2018年产量/
千t预测2050年在能源技术领域的
年需求量/千t预测2050年在能源技术领域的年需求量
占2018年产量的百分比/%石墨 930 4590 494 锂 85 415 488 钴 140 644 460 镍 2300 2268 99 铝 60000 5583 9 铟 0.75 1.73 231 钒 73 138 189 银 27 15 56 钕 23 8.4 37 铅 4400 781 18 钼 300 33 11 铜 21000 1378 7 锰 18000 694 4 铁 1200000 7584 1 铬 36000 366 1 数据来源:世界银行,引自《矿产品促气候行动:清洁能源转型的矿产消费强度》报告 表 2 过去十五年全球主要的镍矿勘查投入及分布/百万美元
Table 2. Distribution and trends of nickel mineral exploration budget in last 15 years
年份 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 澳大利亚 197 348.4 173.1 157.7 203.2 224.3 166.6 138.6 125.9 37 58.1 101.2 107.4 123.2 144.9 加拿大 229.8 329.6 148.4 183.2 249.6 210.2 82.7 68.7 45.3 26.5 63.3 56.7 86.5 89.4 109.2 俄罗斯 68 62.5 32.5 15.3 48.1 56.8 56.7 52.5 23.5 25.8 22.1 23.1 55 40.5 51 拉丁美洲 143.4 186.6 90.9 87.3 77 78.1 56.5 36.6 39.9 35.8 25.8 28 32 28.1 30.2 亚太地区 90 188.1 130.1 100 116.3 108.2 84.3 53.4 45.9 48.3 21 25.6 17.8 16.6 21.2 美国 20.5 24.7 19.6 40.7 8.5 8.3 20.4 20.9 23.9 26.3 15.9 18.7 14.5 4.3 13 非洲 60.4 82.3 53.7 33.6 62.8 57.8 47.9 40.5 9.9 9.2 5.7 7.2 9.1 5 5.1 其他 61.3 60.6 35.8 53.5 74.2 80.6 81.9 58.9 51.3 29.3 32.4 37.3 29.3 26.8 48.3 数据来源:美国标普数据库 表 3 主要矿山镍生产国及产量/t
Table 3. The main countries of mine nickel and its production
年份 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 俄罗斯 262000 274000 270000 268700 264000 264000 261000 221387 206892 206622 中国 84788 79756 89792 93300 93200 101100 101400 100200 94381 98963 印度尼西亚 190641 216460 226907 622.218 811481 145548 128605 172713 358019 647674 菲律宾 139744 184330 319353 317621 313050 443909 466754 315506 389377 424915 加拿大 135037 160063 219025 211701 227743 228867 234519 235034 211166 179990 澳大利亚 165782 168477 215014 282066 292620 266181 225227 203136 178853 170312 新喀里多尼亚 97921 132116 128113 131693 164406 175174 193199 204207 215382 216225 全球合计 134579 1519907 1803909 2302357 2553658 2094421 2132050 1916890 2155301 2414394 数据来源:世界金属统计局 表 4 主要精炼镍生产国及产量/t
Table 4. The main countries of refined nickel and its production
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 挪威 88577 92185 92427 91687 91000 90500 91200 92700 86500 90800 俄罗斯 245000 262500 266000 254000 242000 239436 231916 192095 159896 149325 中国 268920 314315 469744 590872 710657 537137 453197 436973 620982 747919 印度尼西亚 12550 18688 19690 18373 22849 21603 47430 95132 188440 276402 日本 143513 166076 156883 169556 177810 177782 192789 195565 187046 186736 加拿大 116909 105413 142445 146850 152728 149486 149717 158299 163200 146225 澳大利亚 131210 101595 110213 125634 141252 137762 152978 120520 108500 113500 新喀里多尼亚 38229 39802 40513 45383 48371 62049 77530 95983 104094 107914 全球 1356087 1436332 1663600 1838081 1984467 1836038 1837883 1828072 2076677 2268363 数据来源:世界金属统计局 -
[1] 王文举. 中国碳排放总量确定、指标分配、实现路径机制设计综合研究[M]. 北京: 首都经济贸易大学出版社, 2018: 1-454.
WANG W J. A comprehensive study on the determination of China's total carbon emissions, the allocation of targets, and the mechanism design of implementation paths [M]. Beijing: Capital University of Economics and Business Press, 2018: 1-454.
[2] 白永秀, 鲁能, 李双媛. 双碳目标提出的背景、挑战、机遇及实现路径[J]. 中国经济评论, 2021(5):10-13.
BAI Y X, LU N, LI S Y. The background, challenge, opportunity and realization path of the goal of carbon peaking and carbon neutrality[J]. China Economic Review, 2021(5):10-13.
[3] 张中祥. “双碳”目标下中国绿色低碳转型和高质量发展[J]. 中国经济报告, 2021(4):165-167. doi: 10.3969/j.issn.1673-3788.2021.04.072
ZHANG Z X. China and the world under the targets of carbon peak and carbon neutralization—green low-carbon transformation, green finance, carbon market and carbon border adjustment mechanism[J]. China Policy Review, 2021(4):165-167. doi: 10.3969/j.issn.1673-3788.2021.04.072
[4] 乔晓楠, 彭李政. 碳达峰、碳中和与中国经济绿色低碳发展[J]. 中国特色社会主义研究, 2021(04):43-56.
QIAO X N, PENG L Z. Carbon peak, carbon neutrality and green and low-carbon development of China's economy[J]. Studies on Socialism with Chinese Characteristics, 2021(04):43-56.
[5] 余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(2):17-24.
YU B Y, ZHAO G P, AN R Y, et al. Research on China’s CO2 emission pathway under carbon neutral target[J]. Journal of Beijing Institute of Technology(Social Sciences Edition), 2021, 23(2):17-24.
[6] 鲁博文, 张立麒, 徐勇庆, 等. 碳捕集、利用与封存(CCUS)技术助力碳中和实现[J]. 工业安全与环保, 2021, 47(S1): 30-34.
LU B W, ZHANG L Q, XU Y Q, et al. Carbon capture, utilization and storage(CCUS)technology helps to the realization of carbon neutralization. [J] Industrial Safety and Environmental Protection, 2021, 47(S1): 30-34.
[7] 王灿, 孙若水, 张九天. 中国实现碳中和的支撑技术与路径[J]. China Economist, 2021, 16(5):32-70.
WANG C, SUN R S, ZHANG J T. Supportive technologies and roadmap for China’s carbon neutrality[J]. China Economist, 2021, 16(5):32-70.
[8] 邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 48(2):411-420. doi: 10.11698/PED.2021.02.18
ZOU C N, XIONG B, XUE H Q, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2):411-420. doi: 10.11698/PED.2021.02.18
[9] 王文, 赵越. 欧美碳减排经验教训及对中国的借鉴意义[J]. 新经济导刊, 2021(2):28-35. doi: 10.3969/j.issn.1009-959X.2021.02.005
WANG W, ZHAO Y. Experience and lessons of carbon emission reduction in Europe and America and its significance for China[J]. New Economy Weekly, 2021(2):28-35. doi: 10.3969/j.issn.1009-959X.2021.02.005
[10] 张时聪, 王珂, 杨芯岩, 等. 建筑部门碳达峰碳中和排放控制目标研究[J]. 建筑科学, 2021, 37(8):189-198.
ZHANG S C, WANG K, YANG X Y, et al. Research on emission goal of carbon peak and carbon neutral in building sector[J]. Building Science, 2021, 37(8):189-198.
[11] 苍大强. 钢铁工业“碳达峰”“碳中和”及低碳技术的误区及现实路径[J]. 中国冶金, 2021, 31(9):3-8.
CANG D Q. Misunderstandings and realistic path of carbon peak carbon neutrality and low carbon technologies in iron and steel industry[J]. China Metallurgy, 2021, 31(9):3-8.
[12] 强海洋, 高兵, 郭冬艳, 等. 碳中和背景下矿业可持续发展路径选择[J]. 中国国土资源经济, 2021, 34(04):4-11.
QIANG H Y, GAO B, GUO D Y, et al. Options for sustainable development of mining industry under the background of carbon neutrality[J]. Natural Resource Economics of China, 2021, 34(04):4-11.
[13] 马静玉, 程东波. 碳中和愿景下金属矿产行业的挑战与机遇[J]. 科技导报, 2021, 39(19):48-55.
MA J Y, CHENG D B. Challenges and opportunities of metallic mineral industry under the vision of carbon neutrality[J]. Science & Technology Review, 2021, 39(19):48-55.
[14] 张福明, 程相锋, 银光宇, 等. 国内外低碳绿色炼铁技术的发展[J]. 炼铁, 2021, 40(5):1-8.
ZHANG F M, CHENG X F, YIN G Y, et al. Development of low-carbon green ironmaking technology at home and abroad[J]. Ironmaking, 2021, 40(5):1-8.
[15] The World Bank. Minerals for climate action: the mineral intensity of the clean energy transition[DB/OL]. [2020-05].
[16] S&P Global Market Intelligence. Commodities [DB/OL]. [2021-07-18].https://platform.mi.spglobal. Cn
[17] World Bureau of Metal Statistics. [DB/OL]. https://world-bureau.co.uk/
[18] crugroup . CRU阐述: 硫化镍缘何失宠[DB/OL].[2021-03]. https://www.crugroup.com/knowledge-and-insights/insights/2021/cru%E9%98%90%E8%BF%B0-%E7%A1%AB%E5%8C%96%E9%95%8D%E7%BC%98%E4%BD%95%E5%A4%B1%E5%AE%A0/
[19] 邢佳韵, 张晓鹤, 陈其慎, 等. “二元消费”影响下的镍供需形势分析[J]. 地球学报, 2021, 42(2):251-257. doi: 10.3975/cagsb.2020.110202
XING J Y, ZHANG X H, CHEN Q S, et al. An analysis of nickel supply and demand situation under the influence of “dual consumption”[J]. Acta Geoscientica Sinica, 2021, 42(2):251-257. doi: 10.3975/cagsb.2020.110202
[20] 张邦胜, 刘贵清, 刘昱辰, 等. 2020年硫酸镍市场分析[J]. 中国资源综合利用, 2021, 39(1):86-91. doi: 10.3969/j.issn.1008-9500.2021.01.026
ZHANG B S, LIU G Q, LIU Y C, er al. Analysis of nickel sulfate market in 2020[J]. China Resources Comprehensive Utilization, 2021, 39(1):86-91. doi: 10.3969/j.issn.1008-9500.2021.01.026
[21] 安泰科. 镍产业现状、展望及经营对策.
Antaike. Current situation, prospects and management countermeasures of nickel industry. [DB/OL]. extension: //oemmndcbldboiebfnladdacbdfmadadm/http://www.shfe.com.cn/upload/20210702/1625217935899.pdf
[22] 张本曰, 刘丹, 郭锐, 等. 含镍蛇纹石的综合利用现状[J]. 矿产综合利用, 2020(4):13-20. doi: 10.3969/j.issn.1000-6532.2020.04.003
ZHANG B Y, LIU D, GUO R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):13-20. doi: 10.3969/j.issn.1000-6532.2020.04.003
[23] 王帅, 姜颖, 郑富强, 等. 红土镍矿火法冶炼技术现状与研究进展[J]. 中国冶金, 2021, 31(10):1-7.
WANG S, JIANG Y, ZHENG F Q, et al. Development of pyrometallurgical technology of laterite nickel ore[J]. China Metallurgy, 2021, 31(10):1-7.
[24] 武兵强, 齐渊洪, 周和敏, 等. 红土镍矿火法冶炼工艺现状及进展[J]. 矿产综合利用, 2020(3):78-83+93. doi: 10.3969/j.issn.1000-6532.2020.03.012
WU B Q, QI Y H, ZHOU H M, et al. Status and progress in pyrometallurgy processes of a laterite nickel ore[J]. Multipurpose Utilization of Mineral Resources, 2020(3):78-83+93. doi: 10.3969/j.issn.1000-6532.2020.03.012
[25] 郭远生, 罗玉福, 等. 中国和东南亚红土型镍矿地质与勘查[M]. 北京: 地质出版社, 2013: 1-310.
GUO Y S, LUO Y F, et al. Geology and exploration of laterite nickel deposits in China and Southeast Asia[M]. Beijing: Geological publishing house, 2013: 1-310.
[26] 李长玖, 陈玉明, 黄旭日, 等. 镍矿的处理工艺现状及进展[J]. 矿产综合利用, 2012(6):8-11.
LI C J, CHEN Y M, HUANG X R, et al. The Present situation and development of nickel ore processing technology[J]. Multipurpose Utilization of Mineral Resources, 2012(6):8-11.
[27] 高冰镍工艺、成本拆分及后市如何演变 [EB/OL]. [2022-01-05]. https://zhuanlan.zhihu.com/p/453669030
-