Recent Advances for Phase Transformation and Reconstruction of Gold-bearing Inclusions during the Pre-oxidation of Refractory Gold Ores
-
摘要:
这是一篇矿业工程领域的论文。在“双碳”和难处理金矿资源“压舱石”背景下,预氧化是难处理金矿高效提金的有效预处理方法。有效破坏微细浸染金包裹体,消除或避免有害物质对金的钝化、劫金或二次包裹作用,是决定难处理金矿中金回收率高低的关键和瓶颈问题。明晰预氧化过程中载金物质的相变重构演化规律,对定向破坏载金包裹体和高效浸金至关重要。本文概述了难处理金矿的典型特征与现有预氧化技术,总结了焙烧氧化、热压氧化、生物氧化、化学氧化及其他预氧化过程中载金包裹体的相变重构研究进展。结果表明,载金硫化物通过预氧化主要转变为铁(砷)氧化物和硫(砷)酸盐,受氧化温度、气氛或含氧量、酸碱环境、氧化还原电位、菌种特性等多因素耦合作用,也可能转变为单质硫、氧化硫、硫代硫酸盐、黄钾铁矾和臭葱石等次生产物,黄钾铁矾、氧化铁和硫酸钙等是导致金二次包裹的主要固相物质。低温低压中性热压氧化,高效嗜热嗜碱耐砷菌种驯化、多因素耦合下的细菌氧化过程强化,绿色高效氧化剂筛选、基于多场耦合的化学氧化等预氧化工艺开发与微观机制仍需系统深入研究。矿石特性、预氧化过程反应、载金物质相变重构与金回收率之间的耦合关系及调控是未来难处理金矿绿色高效预氧化领域的研究热点与难点。
Abstract:This is an article in the field of mining engineering. Under the background of "double carbon" and "ballast stone" of refractory gold ore resources, pre-oxidation is an effective pretreatment method for efficient gold extraction from refractory gold ores. Destroying the finely impregnated gold inclusions, and eliminating or avoiding the passivation, robbing or secondary wrapping of gold by harmful substances, are the key and bottleneck problems to determine the gold recovery rate in refractory gold ores. Understanding the phase transformation and reconstruction evolution of gold-bearing minerals during pre-oxidation process is critical for inclusions destruction directly and gold leaching. In this article, the typical characteristics of refractory gold ores and existing pre-oxidation techniques were outlined, and the research advances in phase transformation and reconstruction of gold-bearing inclusions in roasting oxidation, hot-press oxidation, biological oxidation, chemical oxidation and other pre-oxidation processes were summarized. The result shows that the gold-bearing sulfides are mainly transformed into Fe oxides (or As oxides) and sulfate (or arsenate) by pre-oxidation. However, due to the coupling effect of multiple factors such as oxidation temperature, atmosphere or oxygen concentration, pH value, redox potential, Bacterial characteristics, etc., sulfides may also be converted into elemental sulfur, sulfur oxide, thiosulfate, jarosite and scorodite. In addition, jarosite, iron oxide and calcium sulfate are the main solid matters leading to the secondary package of gold. Pre-oxidation process and microscopic mechanisms, such as neutral thermobaric oxidation with low temperature and pressure, bacteria domestication with thermophilic, alkalophilic and arsenic-resistant properties, process enhancement of bacterial oxidation under multi-factor coupling, green and efficient oxidant screening, and chemical oxidation based on multi-field coupling, etc., still need to be deeply researched. The coupling relationship and regulation among ore characteristics, process reaction of pre-oxidation, phase transformation and reconstruction of gold-bearing materials and gold recovery rate are the research hotspots and difficulties in the green and efficient pre-oxidation field for refractory gold ores in the future.
-
-
Table 1. Four types of gold mining difficult to process reasons and bottlenecks
金矿类型 难处理原因 瓶颈问题 微细浸染型金矿 金以显微、次显微甚至晶格金形态浸染包裹于脉石矿物,通过磨矿难以使金暴露出来与浸出剂接触反应 在适中的磨矿成本下,微细金的快速暴露及与浸出剂的有效触、绿色高效预处理及浸出剂的开发 复杂性共生金矿 金矿中S、As、Fe、Sb等有害元素含量高,浸出过程会消耗大量氧、碱和浸出剂且容易形成的铁氧化物、砷和锑化合物造成金二次包裹 有害元素的高效去除、金二次包裹的有效避免 碳质金矿 矿石中存在高活性的无定型有机碳、石墨等碳质物和黏土矿物,具有较强“劫金”特性 消除碳质物质及粘土矿物等具有“劫金”特性的矿物 碲化矿 金以不溶性合金或碲化金等化合物形式存在;金与碲、铋、锑等导电矿物发生阳极溶解钝化 溶解不溶性合金或碲化金的药剂及工艺开发、快速消除金与导电矿物钝化 Table 2. Applicable gold ore types and advantages and disadvantages of pre-oxidation technology
预氧化技术 适用金矿类型 优点 缺点 焙烧氧化 复杂性共生金矿碳质金矿 工艺成熟、操作简单、对原料适应性强 易过烧导致二次包裹,产生As2O3和SO2等有毒气体 热压氧化 高硫高砷微细浸染型金矿 反应速度快、预氧化效率高 设备要求高,废料难以综合回收 生物氧化 高硫高砷低品位难选金矿 环境污染小、设备投资少、流程简单、操作方便 氧化效率低、环境苛刻 化学氧化 高硫高砷微细浸染型金矿复杂性共生金矿 操作方便、适应性强、反应速度快、
周期短试剂对矿种、工艺条件变化敏感,设备要求高,成本较高 -
[1] 董延涛, 阴秀琦, 张艳飞, 等. 战略性矿产资源高质量开发利用问题与对策[J]. 地球学报, 2021, 42(2):145-150.DONG Y T, YIN X Q, ZHANG Y F, et al. Research on high quality development of strategic mineral resources industry[J]. Acta Geoscientica Sinica, 2021, 42(2):145-150.
DONG Y T, YIN X Q, ZHANG Y F, et al. Research on high quality development of strategic mineral resources industry[J]. Acta Geoscientica Sinica, 2021, 42(2):145-150.
[2] 丁全利, 胡容波. 《中国矿产资源报告(2021)》发布[N]. 中国自然资源报.DING Q L, HU R B. 《China's Mineral Resources Report (2021)》release[N]. China Natural Resources News.
DING Q L, HU R B. 《China's Mineral Resources Report (2021)》release[N]. China Natural Resources News.
[3] 2020年全球及中国黄金行业发展现状分析国内黄金产量位居全球首位[EB/OL]. (2020-09-07)[2022-08-07]. https://www.sohu.com/a/416906417_114835.Analysis of global and Chinese gold industry development status in 2020, domestic gold production ranks first in the world. [EB/OL]. (2020-09-07)[2022-08-07]. https://www.sohu.com/a/416906417_114835.
Analysis of global and Chinese gold industry development status in 2020, domestic gold production ranks first in the world. [EB/OL]. (2020-09-07)[2022-08-07]. https://www.sohu.com/a/416906417_114835.
[4] 梁晓, 胡瑞彪, 冯泽平. 广东某复杂难选难浸金矿工艺矿物学研究[J]. 矿产综合利用, 2019(6):65-68.LIANG X, HU R B, FENG Z P. Study on the technological mineralogy of a complex refractory gold ore in Guangdong[J]. Multipurpose Utilization of Mineral Resources, 2019(6):65-68.
LIANG X, HU R B, FENG Z P. Study on the technological mineralogy of a complex refractory gold ore in Guangdong[J]. Multipurpose Utilization of Mineral Resources, 2019(6):65-68.
[5] Zhang X, Kou J, Sun C. A comparative study of the thermal decomposition of pyrite under microwave and conventional heating with different temperatures[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138:41-53. doi: 10.1016/j.jaap.2018.12.002
[6] 张磊, 郭学益, 田庆华, 等. 难处理金矿预处理方法研究进展及工业应用[J]. 黄金, 2021, 42(6):60-68.ZHANG L, GUO X Y, TIAN Q H, et al. Research progress and industrial application of pretreatment methods for refractory gold ores[J]. GOLD, 2021, 42(6):60-68.
ZHANG L, GUO X Y, TIAN Q H, et al. Research progress and industrial application of pretreatment methods for refractory gold ores[J]. GOLD, 2021, 42(6):60-68.
[7] 孙留根, 袁朝新, 王云, 等. 难处理金矿提金的现状及发展趋势[J]. 有色金属(冶炼部分), 2015(4):38-43.SUN L G, YUAN C X, WANG Y, et al. Status and development of gold extraction from refractory gold ore[J]. Nonferrous Metals(Extractive Metallurgy), 2015(4):38-43.
SUN L G, YUAN C X, WANG Y, et al. Status and development of gold extraction from refractory gold ore[J]. Nonferrous Metals(Extractive Metallurgy), 2015(4):38-43.
[8] 张辰敏. 工艺矿物学在难处理金矿矿物加工中的应用[J]. 中国金属通报, 2021(5):158-159.ZHANG C M. Application of process mineralogy in refractory gold ore processing[J]. China Metal Bulletin, 2021(5):158-159.
ZHANG C M. Application of process mineralogy in refractory gold ore processing[J]. China Metal Bulletin, 2021(5):158-159.
[9] 李塨灏, 焦芬, 吴奕彤, 等. 难处理金矿预处理及金回收技术进展[J/OL]. 贵金属. https://kns.cnki.net/kcms/detail/53.1063.TG.20220709.1242.002.html.LI G H, JIAO F, WU Y T, et al. Pretreatment and gold extraction status for refractory gold ore [J/OL]. Precious Metals, https://kns.cnki.net/kcms/detail/53.1063.TG.20220709.1242.002.html.
LI G H, JIAO F, WU Y T, et al. Pretreatment and gold extraction status for refractory gold ore [J/OL]. Precious Metals, https://kns.cnki.net/kcms/detail/53.1063.TG.20220709.1242.002.html.
[10] 李骞, 董中林, 张雁, 等. 含硫砷含碳金精矿提金工艺研究[J]. 黄金, 2016, 37(11):41-45.LI Q, DONG Z L, ZHANG Y, et al. Study on gold extraction from carbonaceous gold concentrates containing sulfur and arsenic[J]. GOLD, 2016, 37(11):41-45.
LI Q, DONG Z L, ZHANG Y, et al. Study on gold extraction from carbonaceous gold concentrates containing sulfur and arsenic[J]. GOLD, 2016, 37(11):41-45.
[11] 宋言. 高硫含砷难处理金矿的细菌氧化及强化浸出机理研究[D]. 沈阳: 东北大学, 2019.SONG Y. Study on bio-oxidation and strengthening bio-oxidation mechanism of refractory high-sulfur and arsenic-bearing gold concentrate[D]. Shenyang: Northeastern University, 2019.
SONG Y. Study on bio-oxidation and strengthening bio-oxidation mechanism of refractory high-sulfur and arsenic-bearing gold concentrate[D]. Shenyang: Northeastern University, 2019.
[12] 赵磊. 山东某浮选金精矿氰化浸出实验研究[J]. 矿产综合利用, 2021(5):167-171.ZHAO L. Study on cyanide leaching of a floating gold concentrate in Shandong[J]. Multipurpose Utilization of Mineral Resources, 2021(5):167-171.
ZHAO L. Study on cyanide leaching of a floating gold concentrate in Shandong[J]. Multipurpose Utilization of Mineral Resources, 2021(5):167-171.
[13] 杨佐怀, 董越, 郭俊杰, 等 . 新疆某金矿选冶联合工艺研究[J]. 矿产综合利用, 2022(3):121-125.YANG Z H, DONG Y, GUO J J, et al. Beneficiation and metallurgical process study for a gold mine in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2022(3):121-125. doi: 10.3969/j.issn.1000-6532.2022.03.021
YANG Z H, DONG Y, GUO J J, et al. Beneficiation and metallurgical process study for a gold mine in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2022(3):121-125. doi: 10.3969/j.issn.1000-6532.2022.03.021
[14] Guo X, Zhang L, Tian Q, et al. Stepwise extraction of gold and silver from refractory gold concentrate calcine by thiourea[J]. Hydrometallurgy, 2020, 194:105330. doi: 10.1016/j.hydromet.2020.105330
[15] 廖钦桓, 李旭坚. 难浸金矿预处理技术及其应用[J]. 采矿工程, 2017(24):76-78.LIAO Q H, LI X J. Study on cyanide pretreatment technology of refractory gold ore and its application[J]. Mining Engineering, 2017(24):76-78.
LIAO Q H, LI X J. Study on cyanide pretreatment technology of refractory gold ore and its application[J]. Mining Engineering, 2017(24):76-78.
[16] 冯吉福, 周卫宁, 李尽善, 等. 微细浸染型金矿酸性热压氧化预处理动力学研究[J]. 贵金属, 2017, 38(3):10-16.FENG J F, ZHOU W N, LI J S, et al. Study on the kinetics of pretreatment for micro-disseminated sulfide gold ores by acidic autoclave oxidation[J]. Precious Metals, 2017, 38(3):10-16.
FENG J F, ZHOU W N, LI J S, et al. Study on the kinetics of pretreatment for micro-disseminated sulfide gold ores by acidic autoclave oxidation[J]. Precious Metals, 2017, 38(3):10-16.
[17] 姚国成, 阮仁满, 温建康. 难处理金矿的生物预氧化技术及工业应用[J]. 矿产综合利用, 2003(1):33-39.YAO G C, RUAN R M, WEN J K, et al. Bio-oxidation pretreatment technology for refractory gold ores and its commercial application[J]. Multipurpose Utilization of Mineral Resources, 2003(1):33-39.
YAO G C, RUAN R M, WEN J K, et al. Bio-oxidation pretreatment technology for refractory gold ores and its commercial application[J]. Multipurpose Utilization of Mineral Resources, 2003(1):33-39.
[18] Nan X, Cai X, Kong J. Pretreatment process on refractory gold ores with As[J]. ISIJ International, 2014, 54(3):543-547. doi: 10.2355/isijinternational.54.543
[19] Qin H, Guo X, Tian Q, et al. Recovery of gold from sulfide refractory gold ore: Oxidation roasting pretreatment and gold extraction[J]. Minerals Engineering, 2021, 164:106822. doi: 10.1016/j.mineng.2021.106822
[20] Wu H, Feng Y, Li H, et al. Effect of sodium carbonate on alkaline self-leaching of gold from flotation gold ore[J]. Separation and Purification Technology, 2021, 256:117499. doi: 10.1016/j.seppur.2020.117499
[21] Prasad A, Singru R M, Biswas A K. Study of the roasting of pyrite minerals by mossbauer spectroscopy[J]. Physica Status Solidi A, 1985, 1:267-271.
[22] 赵留成, 李绍英, 孙春宝, 等. 金精矿中性焙烧过程中的物相转变及其磁性特征研究[J]. 矿产保护与利用, 2017(2):69-74.ZHAO L C, LI S Y, SUN C B, et al. Study on phase transformation and magnetic properties of gold concentrate in neutral roasting process[J]. Conservation and Utilization of Mineral Resources, 2017(2):69-74.
ZHAO L C, LI S Y, SUN C B, et al. Study on phase transformation and magnetic properties of gold concentrate in neutral roasting process[J]. Conservation and Utilization of Mineral Resources, 2017(2):69-74.
[23] Zhang X, Song Y, Wu L, et al. Unraveling the dissociation mechanism of gold in carbonaceous gold ore during vacuum roasting pretreatment: Effect of pyrite[J]. Minerals Engineering, 2022, 184:107658. doi: 10.1016/j.mineng.2022.107658
[24] Port S T, Chevrier V F. Stability of pyrrhotite under experimentally simulated Venus conditions[J]. Planetary and Space Science, 2020, 193:105022. doi: 10.1016/j.pss.2020.105022
[25] 辰巳良介. Pretreatment method for gold ore and method for recovering gold from gold ore. JP2017179430A[P]. 2016.03. 29.Ryousuke T. Pretreatment method for gold ore and method for recovering gold from gold ore. JP2017179430A[P]. 2016.03. 29.
Ryousuke T. Pretreatment method for gold ore and method for recovering gold from gold ore. JP2017179430A[P]. 2016.03. 29.
[26] Zhang X, Sun C, Xing Y, et al. Thermal decomposition behavior of pyrite in a microwave field and feasibility of gold leaching with generated elemental sulfur from the decomposition of gold-bearing sulfides[J]. Hydrometallurgy, 2018, 180:210-220. doi: 10.1016/j.hydromet.2018.07.012
[27] Li Y, Wang R, Han Y, et al. Phase transformation in suspension roasting of oolitic hematite ore[J]. Journal of Central South University, 2015, 22(12):4560-4565. doi: 10.1007/s11771-015-3006-8
[28] 贾玉娟. 高砷高硫金矿焙砂碱介质物相重构及非氰浸金[D]. 贵阳: 贵州大学, 2019.JIA Y J. Phase reconstruction and non-cyanide leaching of high arsenic and high sulfur gold calcine in alkali mediums[D]. Guiyang: Guizhou University, 2019.
JIA Y J. Phase reconstruction and non-cyanide leaching of high arsenic and high sulfur gold calcine in alkali mediums[D]. Guiyang: Guizhou University, 2019.
[29] Aza A H, Rodríguez M A, Rodríguez J L, et al. Decomposition of dolomite monitored by neutron thermodiffractometry[J]. J AM CERAM SOC, 2004, 85(4):881-888.
[30] Zhang X, Song Y, Wu L, et al. Improvement of the leach efficiency of carbonaceous gold concentrates using reduction roasting pretreatment technology[J]. Advanced Powder Technology, 2022, 33(2):103387. doi: 10.1016/j.apt.2021.12.006
[31] Yang Y, Liu J, Wang Z, et al. CO2-mediated sulfur evolution chemistry of pyrite oxidation during oxy-fuel combustion[J]. Combustion and Flame, 2020, 218:75-83. doi: 10.1016/j.combustflame.2020.03.029
[32] Jin J, Han Y, Li H, et al. Mineral phase and structure changes during roasting of fine-grained carbonaceous gold ores and their effects on gold leaching efficiency[J]. Chinese Journal of Chemical Engineering, 2019, 27(5):1184-1190. doi: 10.1016/j.cjche.2018.08.006
[33] 吴冰. 复杂难处理金矿石预处理工艺研究现状及进展[J]. 黄金, 2020, 41(5):65-72.WU B. Current status and progress of the research on complex refractory gold ore pretreatment technology[J]. Gold, 2020, 41(5):65-72.
WU B. Current status and progress of the research on complex refractory gold ore pretreatment technology[J]. Gold, 2020, 41(5):65-72.
[34] Zhang D, Xiao Q, Liu W, et al. Acid leaching decarbonization and following pressure oxidation of carbonic refractory gold ore[J]. Journal of Central South University, 2016, 23(7):1584-1590. doi: 10.1007/s11771-016-3212-z
[35] 张文波. 加压氧化浸出工艺的机理研究[J]. 黄金科学技术, 2011, 19(5):40-44.ZHANG W B. Research on the mechanism of pressure oxidation leaching process[J]. Gold Science and Technology, 2011, 19(5):40-44.
ZHANG W B. Research on the mechanism of pressure oxidation leaching process[J]. Gold Science and Technology, 2011, 19(5):40-44.
[36] 庄荣传, 黄怀国, 范道焱, 等. 一种含砷精金矿的热压氧化预处理方法:CN201610274495.6[P].2018-10-16.ZHUANG R C, HUANG H G, FAN D Y, et al. A hot-press oxidation pretreatment method for arsenic-bearing gold concentrates: CN201610274495.6 [P]. 2018-10-16.
ZHUANG R C, HUANG H G, FAN D Y, et al. A hot-press oxidation pretreatment method for arsenic-bearing gold concentrates: CN201610274495.6 [P]. 2018-10-16.
[37] Ng W S, Liu Y, Chen M. The effect of curing on arsenic precipitation and kinetic study of pressure oxidation of pyrite and arsenopyrite[J]. Minerals Engineering, 2022, 185:107675. doi: 10.1016/j.mineng.2022.107675
[38] 徐忠敏, 翁占平, 国洪柱. 复杂难处理金精矿加压氧化预处理工艺试验研究[J]. 黄金, 2017, 38(2):54-57.XU Z M, WENG Z P, GUO H Z. Experimental study on the treatment of complex refractory gold concentrates by pressure oxidation pretreatment[J]. GOLD, 2017, 38(2):54-57.
XU Z M, WENG Z P, GUO H Z. Experimental study on the treatment of complex refractory gold concentrates by pressure oxidation pretreatment[J]. GOLD, 2017, 38(2):54-57.
[39] Xu B, Li K, Zhong Q, et al. Study on the oxygen pressure alkaline leaching of gold with generated thiosulfate from sulfur oxidation[J]. Hydrometallurgy, 2018, 177:178-186. doi: 10.1016/j.hydromet.2018.03.006
[40] Zhang L, Guo X, Tian Q, et al. Extraction of gold from typical Carlin gold concentrate by pressure oxidation pretreatment - Sodium jarosite decomposition and polysulfide leaching[J]. Hydrometallurgy, 2022, 208:105743. doi: 10.1016/j.hydromet.2021.105743
[41] Zhang S, Yang H, Ma P, et al. Column bio-oxidation of low-grade refractory gold ore containing high-arsenic and high-sulfur: Insight on change in microbial community structure and sulfide surface corrosion[J]. Minerals Engineering, 2022, 175:107201. doi: 10.1016/j.mineng.2021.107201
[42] Wu Z, Zhong S P, Wu Z L, et al. Electrochemical behavior of carbon paste electrode with gold-bearing pyrite in bioleaching[J]. Advanced Materials Research, 2013, 825:360-363. doi: 10.4028/www.scientific.net/AMR.825.360
[43] 李骞, 徐斌, 罗君, 等. 一种协同强化细菌氧化预处理含砷金矿的方法:CN108998667A[P]. 2018-12-14.LI Q, XU B, LUO J, et al. A synergistic enhanced bacterial oxidation pretreatment method for arsenic-bearing gold ores: CN108998667A[P]. 2018-12-14.
LI Q, XU B, LUO J, et al. A synergistic enhanced bacterial oxidation pretreatment method for arsenic-bearing gold ores: CN108998667A[P]. 2018-12-14.
[44] Mubarok M Z, Winarko R, Chaerun S K, et al. Improving gold recovery from refractory gold ores through biooxidation using iron-sulfur-oxidizing/sulfur-oxidizing mixotrophic bacteria[J]. Hydrometallurgy, 2017, 168:69-75. doi: 10.1016/j.hydromet.2016.10.018
[45] 邢志军, 赵俊蔚, 赵国惠, 等. 一种含砷硫碳的难处理金精矿的二次氧化预处理工艺: CN102011013A[P]. 2011-04-13.XING Z J, ZHAO J W, ZHAO G H, et al. A secondary oxidation pretreatment process for hard-to-treat gold concentrates containing arsenic sulfur and carbon: CN102011013A[P]. 2011-04-13.
XING Z J, ZHAO J W, ZHAO G H, et al. A secondary oxidation pretreatment process for hard-to-treat gold concentrates containing arsenic sulfur and carbon: CN102011013A[P]. 2011-04-13.
[46] Konadu K T, Mendoza D M, Huddy R J, et al. Biological pretreatment of carbonaceous matter in double refractory gold ores: A review and some future considerations[J]. Hydrometallurgy, 2020, 196:105434. doi: 10.1016/j.hydromet.2020.105434
[47] Deng Y, Zhang D, Xia J, et al. Enhancement of arsenopyrite bioleaching by different Fe(III) compounds through changing composition and structure of passivation layer[J]. Journal of Materials Research and Technology, 2020, 9(6):12364-12377. doi: 10.1016/j.jmrt.2020.08.088
[48] Zhang D, Chen H, Xia J, et al. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization[J]. Journal of Hazardous Materials, 2020, 384:121359. doi: 10.1016/j.jhazmat.2019.121359
[49] 张世镖, 郑晔, 帮福末, 等. 一种氧化剂与催化剂协同强化含砷金精矿的氧化预处理方法: CN105907961A[P]. 2016-08-31.ZHANG S B, ZHENG Y, BANG F M, et al. An oxidation pretreatment method for arsenic-bearing gold concentrates enhanced by a synergistic oxidant and catalyst: CN105907961A[P]. 2016-08-31.
ZHANG S B, ZHENG Y, BANG F M, et al. An oxidation pretreatment method for arsenic-bearing gold concentrates enhanced by a synergistic oxidant and catalyst: CN105907961A[P]. 2016-08-31.
[50] Bidari E, Aghazadeh V. Pyrite from Zarshuran Carlin-type gold deposit: Characterization, alkaline oxidation pretreatment, and cyanidation[J]. Hydrometallurgy, 2018, 179:222-231. doi: 10.1016/j.hydromet.2018.06.019
[51] Ciminelli V S T, Osseo-Asare K. Kinetics of pyrite oxidation in sodium hydroxide solutions[J]. 1995, 26(4): 677-685.
[52] Bare G T, Mbayo J J K, Ndlovu S, et al. Mineralogical characterization and acid pretreatment of a gold calcine leach residue[J]. Minerals, 2022, 12(1):10.
[53] 杨永斌, 曾冠武, 李骞, 等. 高硫砷金矿焙砂的硫酸熟化法预处理[J]. 中国有色金属学报, 2014, 24(9):2380-2386.YANG Y B, ZENG G W, LI Q, et al. Pretreatment by sulfuric acid-curing of calcine roasting for gold ores with high sulfur and arsenic contents[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(9):2380-2386.
YANG Y B, ZENG G W, LI Q, et al. Pretreatment by sulfuric acid-curing of calcine roasting for gold ores with high sulfur and arsenic contents[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(9):2380-2386.
[54] Gui Q, Hu Y, Wang S, et al. Mechanism of synergistic pretreatment with ultrasound and ozone to improve gold and silver leaching percentage[J]. Applied Surface Science, 2022, 576:151726. doi: 10.1016/j.apsusc.2021.151726
[55] Xu G, Deng F, Fan W, et al. Pre-oxidation of refractory gold concentrate by electrochemical methods in alkaline electrolyte[J]. Materials Today Communications, 2022, 31:103397. doi: 10.1016/j.mtcomm.2022.103397
-