Cycling Utilization of Copper and Cobalt Recovered from the Extraction Raffinate of Copper in Congo (Kinshasa)
-
摘要:
为了从刚果(金)某湿法炼铜厂铜萃余液中回收钴和铜,并实现萃余液的循环利用,采用除铁—沉铜—第一段沉淀钴—第二段沉淀钴工艺流程处理含钴铜萃余液。结果表明,采用该工艺分别得到铁渣、铜渣、粗氢氧化钴和第二段钴渣,铁渣中钙含量26.79%、铜含量0.05%、钴含量0.12%,除铁过程中铜和钴损失率分别为4.64%和3.14%;铜渣含铜3.74%、含钴2.06%;粗氢氧化钴中钴含量32.83%;第二段钴渣含钴7.14%;钴总回收率大于95%。铁渣用于建筑材料,铜渣返回浸出系统回收铜和钴,粗氢氧化钴可直接外售,第二段钴渣经萃余液调浆返回除铁工序,第二段沉钴后溶液回用作磨矿补加水,有价金属和处理后的废液都得到了资源化利用。经生产实践检验,该处理工艺具有良好的经济、环境和社会效益。
Abstract:For recovering cobalt and copper from extraction raffinate of copper in a wet smelter in Congo (DRC) and realizing the cycling utilization of extraction raffinate, the process of iron removal-copper precipitation-cobalt precipitation in the first and second stages was adopted. The results show that the iron slag, the copper slag, the coarse cobalt hydroxide and the second stage cobalt slag can be obtained in this process with the calcium content of 26.79%, the copper content of 0.05%, the cobalt content of 0.12%, the loss rate of copper in the process of iron removal of 4.64%, the loss rate of cobalt in the process of iron removal of 3.14% in the iron slag; the copper content of 3.74%, the cobalt content of 2.06% in the copper slag; the cobalt content of 32.83% in the crude cobalt hydroxide; the cobalt content of 32.83% in the crude cobalt hydroxide. The total recovery rate of cobalt is greater than 95%. The iron slag can be used for building materials. The copper slag returned to the system can be used to recover copper and cobalt. The cobalt hydroxide can be sold directly. The cobalt slag in the second stage is mixed with the extraction raffinate and returned to the iron removal process. The solution after the cobalt precipitation in the second stage is reused for the replenishing water in grinding. The valuable metals and the processed solution have been recycled. After the production practice test, the treatment process has good economic, environmental and social benefits.
-
Key words:
- extraction raffinate of copper /
- precipitation /
- cobalt hydroxide /
- resource utilization
-
-
表 1 含钴萃余液多元素分析
Table 1. Multi-element analysis of extraction raffinate
元素 Cu Co TFe Fe2+ Mn Ca Mg H2SO4 含量/(g·L-1) 0.29 1.03 0.73 0.05 0.99 0.43 1.44 18.39 表 2 除铁后溶液成分
Table 2. Chemical compositions of solution after iron removal
元素 Co Cu Fe Mn Ca Mg 含量/(g·L-1) 0.94 0.26 0.04 0.90 0.44 1.27 表 3 铁渣成分
Table 3. Chemical compositions of iron slag
元素 Co Cu Fe Mn Ca Mg 含量/% 0.12 0.05 2.58 0.12 26.79 0.24 表 4 第一段沉钴后溶液成分
Table 4. Chemical compositions of solution after the cobalt precipitation in the first stage
元素 Co Cu Fe Mn Ca Mg 含量/(g·L-1) 0.27 0 0 0.79 0.44 1.61 表 5 粗氢氧化钴成分
Table 5. Chemical compositions of rough cobalt hydroxide
元素 Co Cu Fe Mn Ca Mg 含量/% 32.83 0.87 0.12 5.62 0.51 4.40 表 6 第二段沉钴后溶液成分
Table 6. Chemical compositions of solution after the cobalt precipitation in the second stage
元素 Co Cu Fe Mn Ca Mg pH 含量/(g·L-1) 0.01 0.00 0.00 0.59 0.83 1.52 8.25 表 7 第二段钴渣成分
Table 7. Chemical compositions of slag with the cobalt precipitation in the second stage
元素 Co Cu Fe Mn Ca Mg 含量/% 7.14 0.00 0.00 5.38 18.51 2.36 表 8 每吨金属钴生产成本
Table 8. Production cost of per ton cobalt
序号 项目 成本/美元 1 辅助材料费 6 523.3 2 动力、燃料费 1 228.9 3 人员工资及福利 2 157.5 4 设备折旧 2 994.3 5 维修费 659.4 6 管理费 431.5 7 销售费用 700 8 其他 150 合计 14 844.9 -
[1] 陈永强, 王成彦, 王忠. 高硅铜钴矿电炉还原熔炼渣型研究[J]. 有色金属(冶炼部分), 2003 (4): 23-25. doi: 10.3969/j.issn.1007-7545.2003.04.008
[2] 王成彦, 尹飞, 王忠. 低硫高硅低品位铜钴混合精矿的处理[J]. 中国有色金属学报, 2008, 18(Z1): 47-52. doi: 10.3321/j.issn:1004-0609.2008.z1.010
[3] 兰玮锋, 米玺学. 从氧化钴矿石中提取钴的试验研究[J]. 湿法冶金, 2008(4): 230-233. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ200804011.htm
[4] 李鑫, 王含渊, 李云. 刚果(金)高钴铜钴矿柱浸试验[J]. 有色金属(冶炼部分), 2015(5): 26-28. doi: 10.3969/j.issn.1007-7545.2015.05.007
[5] 刘大学, 王云, 袁朝新, 等. 某铜钴矿的硫酸还原浸出研究[J]. 有色金属(冶炼部分), 2013(6): 18-21. doi: 10.3969/j.issn.1007-7545.2013.06.005
[6] 于文圣. 从从刚果(金)铜钴氧化矿石中直接还原浸出铜钴[J]. 湿法冶金, 2019(2): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201902004.htm
[7] 郭学益, 姚标, 李晓静, 等. 水钴矿中选择性提取铜和钴的新工艺[J]. 中国有色金属学报, 2012(6): 1778-1783. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201206032.htm
[8] 李明. 刚果(金)氧化铜钴矿冶炼工艺综述[J]. 有色冶金设计与研究, 2012(1): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYJ201201005.htm
[9] 张兴勋. 从某萃余夜除杂后液中回收钴的试验研究[J]. 矿产综合利用, 2020(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202002027.htm
[10] 谢添, 廖春发, 吴免利, 等. 刚果(金)铜钴氧化矿回收铜钴研究[J]. 中国资源综合利用, 2013(5): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201305018.htm
[11] 李强, 杨卜, 阮书峰, 等. 复杂低品位氧化铜钴矿两段逆流直接还原浸出工艺[J]. 有色金属(冶炼部分), 2016(5): 1-4, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201605001.htm
[12] 姚刚, 谢添. 刚果(金)某铜钴矿含钴萃余液制取氢氧化钴的工艺及生产实践[J]. 世界有色金属, 2016(2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201604025.htm
[13] 梁新星, 胡磊, 欧阳全胜. 铜钴矿研究进展及发展趋势[J]. 湖南有色金属, 2014(3): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201403012.htm
[14] 秦汝勇, 张颖, 黄亚祥, 等. 两段沉淀法处理刚果(金)低品位氧化钴矿制备粗制钴盐的研究[J]. 中国有色冶金, 2019, 48(3): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYL201903025.htm
-